Search Results

You are looking at 1 - 10 of 73 items for :

  • "overreaching" x
  • Physical Education and Coaching x
Clear All
Restricted access

Joel T. Fuller, Clint R. Bellenger, Dominic Thewlis, John Arnold, Rebecca L. Thomson, Margarita D. Tsiros, Eileen Y. Robertson and Jonathan D. Buckley

Purpose:

Stride-to-stride fluctuations in running-stride interval display long-range correlations that break down in the presence of fatigue accumulated during an exhaustive run. The purpose of the study was to investigate whether long-range correlations in running-stride interval were reduced by fatigue accumulated during prolonged exposure to a high training load (functional overreaching) and were associated with decrements in performance caused by functional overreaching.

Methods:

Ten trained male runners completed 7 d of light training (LT7), 14 d of heavy training (HT14) designed to induce a state of functional overreaching, and 10 d of light training (LT10) in a fixed order. Running-stride intervals and 5-km time-trial (5TT) performance were assessed after each training phase. The strength of long-range correlations in running-stride interval was assessed at 3 speeds (8, 10.5, and 13 km/h) using detrended fluctuation analysis.

Results:

Relative to performance post-LT7, time to complete the 5TT was increased after HT14 (+18 s; P < .05) and decreased after LT10 (–20 s; P = .03), but stride-interval long-range correlations remained unchanged at HT14 and LT10 (P > .50). Changes in stride-interval long-range correlations measured at a 10.5-km/h running speed were negatively associated with changes in 5TT performance (r –.46; P = .03).

Conclusions:

Runners who were most affected by the prolonged exposure to high training load (as evidenced by greater reductions in 5TT performance) experienced the greatest reductions in stride-interval long-range correlations. Measurement of stride-interval long-range correlations may be useful for monitoring the effect of high training loads on athlete performance.

Restricted access

Lieselot Decroix, Robert P. Lamberts and Romain Meeusen

fatigue, resulting in decreased performance. 2 In the case of functional overreaching (FO), decreased performance will be reversed after appropriate recovery time in which supercompensation can occur, and improved performance will follow. 2 However, in nonfunctional overreaching (NFO) and overtraining

Restricted access

Twan ten Haaf, Selma van Staveren, Danilo Iannetta, Bart Roelands, Romain Meeusen, Maria F. Piacentini, Carl Foster, Leo Koenderman, Hein A.M. Daanen and Jos J. de Koning

An imbalance between exercise load and recovery time results in maladaptation to physical training. This process is termed overtraining, which can lead to functional overreaching (FOR) or nonfunctional overreaching (NFOR) or overtraining syndrome. 1 , 2 FOR is sometimes intentionally induced in

Restricted access

Diogo V. Leal, Lee Taylor and John Hough

Successful athletic training requires balanced overload and recovery, without which short-term performance decrements can occur (eg, overreaching) in as little as 7 days. 1 Importantly, while overreached athletes can experience performance decrements in the short term, sufficient recovery (days to

Restricted access

Cyril Schmit, Rob Duffield, Christophe Hausswirth, Jeanick Brisswalter and Yann Le Meur

. Conversely, training at high intensities in the heat is also likely to increase the internal training load and to augment the risk of functional overreaching (F-OR). As F-OR has been associated with altered cardiac function 10 and impaired perceptual responses to exercise, 11 these maladaptations are

Restricted access

Thomas Reeve, Ralph Gordon, Paul B. Laursen, Jason K.W. Lee and Christopher J. Tyler

 ∼38°C) may not have been sufficient for adaptation. 12 Schmit et al 10 prescribed 60 minutes of high-intensity HA based on the participant’s highest intensity training sessions and observed positive physiological adaptations to the heat but reported that they were offset by functional overreaching

Restricted access

Maria Francesca Piacentini and Romain Meeusen

Purpose:

This longitudinal case study evaluated the effectiveness of an online training-monitoring system to prevent nonfunctional overreaching (NFOR).

Methods:

A female master track and field athlete was followed by means of a daily online training diary (www.spartanova.com) and a weekly profile of mood state (POMS). The online diary consists of objective training data and subjective feelings reported on a 10-cm visual analog scale. Furthermore, parameters that quantify and summarize training and adaptation to training were calculated. The novelty consists in the inclusion of a specific measuring parameter tested to detect NFOR (OR score).

Results:

During track-season preparation, the athlete was facing some major personal changes, and extratraining stress factors increased. Despite the fact that training load (TL) did not increase, the or score showed a 222% and then a 997% increase compared with baseline. POMS showed a 167% increase in fatigue, a 38% decrease in vigor, a 32% increase in depression scores, and a total mood increase of 22%, with a 1-wk shift compared with the OR score. A 41% decrease in TL restored the OR score and POMS to baseline values within 10 d.

Conclusion:

The results demonstrate that immediate feedback obtained by “warning signals” to both athletes and coaches, based on individual baseline data, seems an optimal predictor of FOR/NFOR.

Restricted access

Lieselot Decroix, Maria Francesca Piacentini, Gerard Rietjens and Romain Meeusen

Purpose:

High training loads combined with other stressors can lead to performance decrements. The time needed to recover determines the diagnosis of (non)-functional overreaching or the overtraining syndrome. The aim of this study was to describe the effects of an 8-day (intensified) training camp of professional female cyclists on physical and cognitive performance.

Methods:

Nine subjects performed a 30-min time trial (TT), cognitive test, and Profile of Mood States questionnaire before, during, and after a training camp (49% increased training volume). On data collection, cyclists were classified as “overreached” (OR) or “adapted” (A) based on TT performance. Two-way repeated-measures analysis of variance was used to detect changes in physical and cognitive parameters.

Results:

Five cyclists were described as OR based on decreased mean power output (MPO) (–7.03%) on day 8. Four cyclists were classified as A (increased MPO: +1.72%). MPO and maximal heart rate were significantly different between A and OR groups. A significant slower reaction time (RT) (+3.35%) was found in OR subjects, whereas RT decreased (–4.59%) in A subjects. The change in MPO was negatively correlated with change in RT in the cognitive test (R 2 = .52).

Conclusions:

This study showed that the use of objective, inexpensive, and easy-to-interpret physical and cognitive tests can facilitate the monitoring of training adaptations in professional female athletes.

Restricted access

Yann Le Meur, Martin Buchheit, Anaël Aubry, Aaron J Coutts and Christophe Hausswirth

Purpose:

Faster heart-rate recovery (HRR) after high to maximal exercise (≥90% of maximal heart rate) has been reported in athletes suspected of functional overreaching (f-OR). This study investigated whether this response would also occur at lower exercise intensity.

Methods:

Responses of HRR and rating of perceived exertion (RPE) were compared during an incremental intermittent running protocol to exhaustion in 20 experienced male triathletes (8 control subjects and 13 overload subjects led to f-OR) before and immediately after an overload training period and after a 1-wk taper.

Results:

Both groups demonstrated an increase in HRR values immediately after the training period, but this change was very likely to almost certainly larger in the f-OR group at all running intensities (large to very large differences, eg, +16 ± 7 vs +3 ± 5 beats/min, in the f-OR and control groups at 11 km/h, respectively). The highest between-groups differences in changes in HRR were reported at 11 km/h (13 ± 4 beats/min) and 12 km/h (10 ± 6 beats/min). A concomitant increase in RPE at all intensities was reported only in the f-OR group (large to extremely large differences, +2.1 ± 1.5 to +0.7 ± 1.5 arbitrary units).

Conclusion:

These findings confirm that faster HRR does not systematically predict better physical performance. However, when interpreted in the context of the athletes’ fatigue state and training phase, HRR after submaximal exercise may be more discriminant than HRR measures taken after maximal exercise for monitoring f-OR. These findings may be applied in practice by regularly assessing HRR after submaximal exercise (ie, warm-up) for monitoring endurance athletes’ responses to training.

Restricted access

Clint R. Bellenger, Laura Karavirta, Rebecca L. Thomson, Eileen Y. Robertson, Kade Davison and Jonathan D. Buckley

Purpose:

Heart-rate variability (HRV) as a measure of autonomic function may increase in response to training interventions leading to increases or decreases in performance, making HRV interpretation difficult in isolation. This study aimed to contextualize changes in HRV with subjective measures of training tolerance.

Methods:

Supine and standing measures of vagally mediated HRV (root-mean-square difference of successive normal RR intervals [RMSSD]) and measures of training tolerance (Daily Analysis of Life Demands for Athletes questionnaire, perception of energy levels, fatigue, and muscle soreness) were recorded daily during 1 wk of light training (LT), 2 wk of heavy training (HT), and 10 d of tapering (T) in 15 male runners/triathletes. HRV and training tolerance were analyzed as rolling 7-d averages at LT, HT, and T. Performance was assessed after LT, HT, and T with a 5-km treadmill time trial (5TTT).

Results:

Time to complete the 5TTT likely increased after HT (effect size [ES] ± 90% confidence interval = 0.16 ± 0.06) and then almost certainly decreased after T (ES = −0.34 ± 0.08). Training tolerance worsened after HT (ES ≥ 1.30 ± 0.41) and improved after T (ES ≥ 1.27 ± 0.49). Standing RMSSD very likely increased after HT (ES = 0.62 ± 0.26) and likely remained higher than LT at the completion of T (ES = 0.38 ± 0.21). Changes in supine RMSSD were possible or likely trivial.

Conclusion:

Vagally mediated HRV during standing increased in response to functional overreaching (indicating potential parasympathetic hyperactivity) and also to improvements in performance. Thus, additional measures such as training tolerance are required to interpret changes in vagally mediated HRV.