Search Results

You are looking at 1 - 10 of 122 items for :

  • "physiological adaptations" x
  • Sport and Exercise Science/Kinesiology x
Clear All
Restricted access

Kirsten Legerlotz, Robert Marzilger, Sebastian Bohm and Adamantios Arampatzis

Purpose:

To understand the mechanisms for the effects of resistance training on functional parameters, and to assess the injury risk of the involved tissues, it is necessary to examine the underlying morphological and structural changes of the respective tissues.

Methods:

The presented information on physiological adaptations have been deduced from cross-sectional studies comparing youth athletes with controls and children with adults as well as from longitudinal studies examining the effects of resistance training in untrained children and adolescents and in youth athletes.

Results:

The evidence indicates, that training induced changes in motor performance rely partly on enhanced neuromuscular control, and partly on morphological adaptation of muscles and tendons, such as changes in muscle, muscle fiber and tendon cross-sectional area, muscle composition, and tendon material properties, with the bone also adapting by increasing bone mineral content and cortical area.

Conclusion:

Although the training induced adaptations of the investigated tissues follows similar principles in children as in adults, the magnitude of the adaptive response appears to be more subtle. As studies investigating physiological adaptation in youth athletes are sparse, more research in this area is warranted to elucidate the specific physiological stimulus-response relationship necessary for effective training programs and injury prevention.

Restricted access

Samuel T. Tebeck, Jonathan D. Buckley, Clint R. Bellenger and Jamie Stanley

various physiological adaptations that may be beneficial for competition in the heat. 1 – 3 Exercise performance deteriorates as temperature increases above 10°C. 4 Sweating and skin blood flow are also increased, 5 indicating that a level of heat strain exists even under temperate conditions when the

Restricted access

Eric D.B. Goulet, Michel O. Mélançon, Mylène Aubertin Leheudre and Isabelle J. Dionne

It is unclear whether long-term aerobic (AT) or resistance (RT) training can improve insulin sensitivity (IS) beyond the residual effect of the last training bout in older women (54–78 years). Therefore, a group of nonobese, healthy older women underwent 6 months of AT (n = 8) or RT (n = 10), and the authors measured IS 4 days after the last training bouts using the hyperinsulinemic-euglycemic clamp technique. Women trained 3 days/week. AT consisted of 25- to 60-min sessions of walking/jogging at 60–95% of maximal heart rate. RT consisted of three sets of nine exercises repeated 10 times at 80% of 1 repetition maximum. AT decreased fat mass, whereas both AT and RT increased fat-free mass. Neither training program, however, improved absolute or relative rates of glucose disposal. The authors therefore concluded that nonobese, healthy older women should perform AT or RT on a daily basis in order to improve IS and maintain the improvement.

Restricted access

R. Pla, Y. Le Meur, A. Aubry, J.F. Toussaint and P. Hellard

100-m swim time and an incremental swim test on the performance and physiological adaptations, and the perceived well-being and fatigue, in 22 elite swimmers during two 6-week crossover periods of THR and POL training. We expected that the POL training would promote larger improvements in performance

Restricted access

Iñigo Mujika, Shona Halson, Louise M. Burke, Gloria Balagué and Damian Farrow

medium- to long-term physiological adaptations to training, while ignoring the potential acute negative impacts. By contrast, reduced training or taper periods are introduced to diminish the detrimental impact of training while the physiological adaptations achieved during intensive training are further

Open access

Anna K. Melin, Ida A. Heikura, Adam Tenforde and Margo Mountjoy

) substantially contribute to fuel needs. However, long-term LEA causes metabolic and physiological adaptations in order to reduce total energy expenditure to prevent further weight loss and promote survival, whereby the body obtains a new energy balance steady state ( Loucks, 2014 ). Therefore, an athlete may be

Restricted access

Erin L. McCleave, Katie M. Slattery, Rob Duffield, Stephen Crowcroft, Chris R. Abbiss, Lee K. Wallace and Aaron J. Coutts

the environmental stimuli. Tapers are reported to further enhance performance in endurance athletes through reducing negative training influences such as accumulated fatigue, while maintaining appropriate physiological adaptations. 19 , 28 As 20-km TT performance improved immediately following the

Restricted access

Gregoire P. Millet, David J. Bentley and Veronica E. Vleck

The relationships between sport sciences and sports are complex and changeable, and it is not clear how they reciprocally influence each other. By looking at the relationship between sport sciences and the “new” (~30-year-old) sport of triathlon, together with changes in scientific fields or topics that have occurred between 1984 and 2006 (278 publications), one observes that the change in the sport itself (eg, distance of the events, wetsuit, and drafting) can influence the specific focus of investigation. The sport-scientific fraternity has successfully used triathlon as a model of prolonged strenuous competition to investigate acute physiological adaptations and trauma, as support for better understanding cross-training effects, and, more recently, as a competitive sport with specific demands and physiological features. This commentary discusses the evolution of the scientific study of triathlon and how the development of the sport has affected the nature of scientific investigation directly related to triathlon and endurance sport in general.

Restricted access

Andrea Di Blasio, Pascal Izzicupo, Emanuele D’Angelo, Sandra Melanzi, Ines Bucci, Sabina Gallina, Angela Di Baldassarre and Giorgio Napolitano

Purpose:

High-intensity aerobic interval training (AIT) has been reported to be more effective than continuous aerobic training (CoAT) to improve metabolic health. The aim of our study was to investigate whether moderate-intensity AIT is more effective than CoAT on metabolic health when applied to a walking training program.

Design/Methods:

Thirty-two postmenopausal women (55.37 ± 3.46 years) were investigated for body composition, plasma glucose, insulin, lipids, adiponectin, HOMA-IR, HOMA-AD, aerobic fitness, dietary habits, and spontaneous physical activity, and randomly assigned to one of two different walking training programs: CoAT or AIT.

Results:

CoAT and AIT elicited the same physiological benefits, including: reduction of plasma glucose, insulin, HOMA-IR and HOMA-AD, and increase of plasma HDL-C, adiponectin, and aerobic fitness.

Conclusions:

An AIT scheme as part of an outdoor walking training program elicits the same physiological adaptations as a CoAT scheme, probably because walking does not promote exercise intensities that elicit greater effects.

Restricted access

Marianne Lacharité-Lemieux and Isabelle J. Dionne

Chronic effects of two different exercise environments on self-chosen intensity and physiological adaptations were examined in postmenopausal women. Twenty-three healthy to overweight (body mass index [BMI] 22–29 kg/m2) postmenopausal women performed three weekly training sessions during 12 weeks and were assigned to either: (1) indoor training or (2) outdoor training. Body composition, metabolic profile, and physical fitness (including Vo2max, maximal strength, and endurance) were assessed pre- and postintervention. Exercise intensity was measured every week during the training. Maximum intensity decreased significantly in time only in outdoor training (p ≤ .05). Body composition and VO2max were significantly improved indoors (p ≤ .05), whereas resting blood pressure and upper body maximal strength and endurance were improved outdoors (p ≤ .05). Indoor training is associated with maintaining intensity over time and slightly higher physiological improvements than outdoor training. However, outdoor training seems promising from a long-term perspective, due to its positive effects on health parameters and exercise adherence.