Search Results

You are looking at 1 - 10 of 19 items for :

  • "treadmill walking" x
  • Physical Education and Coaching x
Clear All
Restricted access

Mark Elisabeth Theodorus Willems, Mehmet Akif Şahin and Matthew David Cook

Intake of the catechin epigallocatechin gallate and caffeine has been shown to enhance exercise-induced fat oxidation. Matcha green tea powder contains catechins and caffeine and is consumed as a drink. We examined the effect of Matcha green tea drinks on metabolic, physiological, and perceived intensity responses during brisk walking. A total of 13 females (age: 27 ± 8 years, body mass: 65 ± 7 kg, height: 166 ± 6 cm) volunteered to participate in the study. Resting metabolic equivalent (1-MET) was measured using Douglas bags (1-MET: 3.4 ± 0.3 ml·kg−1·min−1). Participants completed an incremental walking protocol to establish the relationship between walking speed and oxygen uptake and individualize the walking speed at 5- or 6-MET. A randomized, crossover design was used with participants tested between Days 9 and 11 of the menstrual cycle (follicular phase). Participants consumed three drinks (each drink made with 1 g of Matcha premium grade; OMGTea Ltd., Brighton, UK) the day before and one drink 2 hr before the 30-min walk at 5- (n = 10) or 6-MET (walking speed: 5.8 ± 0.4 km/hr) with responses measured at 8–10, 18–20, and 28–30 min. Matcha had no effect on physiological and perceived intensity responses. Matcha resulted in lower respiratory exchange ratio (control: 0.84 ± 0.04; Matcha: 0.82 ± 0.04; p < .01) and enhanced fat oxidation during a 30-min brisk walk (control: 0.31 ± 0.10; Matcha: 0.35 ± 0.11 g/min; p < .01). Matcha green tea drinking can enhance exercise-induced fat oxidation in females. However, when regular brisk walking with 30-min bouts is being undertaken as part of a weight loss program, the metabolic effects of Matcha should not be overstated.

Restricted access

Michael L. Mestek, John C. Garner, Eric P. Plaisance, James Kyle Taylor, Sofiya Alhassan and Peter W. Grandjean

The purpose of this study was to compare blood lipid responses to continuous versus accumulated exercise. Nine participants completed the following conditions on separate occasions by treadmill walking/jogging at 70% of VO2max : 1) one 500-kcal session and 2) three 167 kcal sessions. Total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) concentrations were measured from serum samples obtained 24 h prior to and 24 and 48 h after exercise. All blood lipid responses were analyzed in 2 (condition) × 3 (time) repeated measures ANOVAs. HDL-C increased by 7 mg/dL over baseline at 48 h post-exercise with three accumulated sessions versus 2 mg/dL with continuous exercise (P < 0.05). Triglyceride concentrations were unchanged in both conditions. These findings suggest that three smaller bouts accumulated on the same day may have a modestly greater effect for achieving transient increases in HDL-C compared to a continuous bout of similar caloric expenditure.

Restricted access

Lawrence E. Armstrong, Roger W. Hubbard, E. Wayne Askew, Jane P. De Luca, Catherine O'Brien, Angela Pasqualicchio and Ralph P. Francesconi

This investigation examined whether low sodium (Na+) (LNA; 68 mEq Na+·d-1) or moderate Na+ (MNA; 137 mEq Na+.d-1) intake allowed humans to maintain health, exercise, and physiologic function during 10 days of prolonged exercise-heat acclimation (HA). Seventeen volunteers, ages 19 to 21, consumed either LNA (n=8) or MNA (n=9) during HA (41°C, 21% RH; treadmill walking for 30 min.h-1, 8 h·d-1 at 5.6 kmh-l, 5% grade), which resulted in significantly reduced heart rate, rectal temperature, and urine Na+ for both groups. There were few between-diet differences in any variables measured. Mean plasma volume in LNA expanded significantly less than in MNA by Days 11 and 15, but reached the MNA level on Day 17 (+12.3 vs. +12.4%). The absence of heat illness, the presence of normal physiologic responses, and the total distance walked indicated successful and similar HA with both levels of dietary Na+.

Restricted access

Stamatis Agiovlasitis, Jeffrey A. McCubbin, Joonkoo Yun, Michael J. Pavol and Jeffrey J. Widrick

This study examined whether the net rate of oxygen uptake (VO2net) and the net oxygen uptake per kilometer (VO2net/km) are affected during walking in adults with Down syndrome (DS) and whether their preferred walking speed (PWS) minimizes the VO2net/km. Respiratory gases were collected as 14 adults with DS and 15 adults without DS completed a series of treadmill walking trials. PWS was measured over 15 meters in a hallway. The VO2net and the VO2net/km were higher in adults with DS than adults without DS. The overground PWS normalized for leg length was the same for both groups and did not appear to minimize the VO2net/km. Thus, adults with DS are less economical during walking than adults without DS. The overground PWS does not minimize the metabolic cost during treadmill walking.

Restricted access

Herman-J. Engels and Emily M. Haymes

This study examined the effects of a single dose of caffeine (5 mg:kg−1) on energy metabolism during 60-min treadmill walking at light (30% VO2max) and moderate (50% VO2max) aerobic intensities in eight sedentary (VO2max 39.6 ±t3.1 ml.kg−1.min−1) males. Caffeine intake 60 min prior to walking exercise increased pre- and postexercise FFA, glycerol, and lactate concentrations (p < 0.05). Blood glucose levels following walking trials were lower than preexercise values (p < 0.05). Gas exchange indicated that caffeine did not change exercise oxygen uptake, RER values, and carbon dioxide production (p0.05). In contrast, a small but statistically significant effect of caffeine on exercise minute ventilation was noted (p~0.01). It is concluded that ingestion of 5 mg.kg−1 caffeine increases the mobilization of energy substrate from fat sources; however, the present data do not provide evidence of a caffeineinduced shift in energy substrate usage. Caffeine is not an effective means for enhancing the energy cost of prolonged walking.

Restricted access

Cynthia M. Ferrara, Susan H. McCrone, David Brendle, Alice S. Ryan and Andrew P. Goldberg

The metabolic changes associated with the addition of 4 months of resistive exercise to an existing aerobic exercise program (AEX+RT, n = 7) were compared to a maintenance aerobic exercise program (AEX, n = 8) in overweight, older men. The subjects in this study had recently completed a 6-month aerobic exercise program (treadmill walking, 45 min/d, 2 d/wk). The AEX+RT group added 6 exercises on upper- and lower-body pneumatic-resistance machines (2 sets, 15 repetitions each, 2 d/wk) to an aerobic exercise program at ≥ 70% heart rate reserve for 30–40 min, 2 d/wk on treadmill, while the AEX group continued the same maintenance treadmill AEX program. There were no baseline differences in body weight, VO2max, or glucose metabolism between groups. The AEX+RT group increased upper- and lower-extremity strength by 28 ± 4% and 46 ± 6%, respectively (p < .05), despite a 9% decrease in VO2max (p < .05). VO2max did not change in the AEX group. There was no change in the fasting glucose or insulin levels, or the 3-h glucose responses to an oral glucose load in either group. The insulin responses decreased by 25 ± 4% in the AEX+RT group (p < .01) but did not change in the AEX group. In conclusion, the addition of resistive exercise training to an existing aerobic exercise program may improve insulin sensitivity in overweight, older men, and thus prevent the development of type 2 diabetes.

Restricted access

Marcos Echegaray, Lawrence E. Armstrong, Carl M. Maresh, Deborah Riebe, Robert W. Kenefick, John W. Castellani, Stavros Kavouras and Douglas Casa

This study assessed the plasma glucose (PG) and hormonal responses to carbohydrate ingestion, prior to exercise in the heat, in a hypohydrated state versus partial rehydration with intravenous solutions. On separate days, 8 subjects (21.0 ± 1.8 years; 57.3 ± 3.7 ml · kg−1 · min−1) exercised at 50% V̇O2maxin a 33 °C environment until a 4% body weight loss was achieved. Following this, subjects were rehydrated (25 ml · kg−1) with either: 0.45% IV saline (45IV), 0.9% IV saline (9IV), or no fluid (NF). Subjects then ingested 1 g · kg−1 of carbohydrate and underwent an exercise test (treadmill walking, 50% V̇O2max, 36 °C) for up to 90 min. Compared to pre-exercise level (294 mg · dl−1), PG increased significantly (>124 mg · dl−1) at 15 min of the exercise test in all trials and remained significantly elevated for 75 min in NF, 30 min more than in the 2 rehydration trials. Although serum Insulin increased significantly at 15 min of exercise in the 45IV trial (7.2 ± 1.2 vs. 23.7 ± 4.7 μIU · ml−1) no significant differences between trials were observed. Peak plasma norepinephrine was significantly higher in NF (640 ± 66 pg · ml−1) compared to the 45IV and 9IV trials (472 ± 55 and 474 ± 52 pg · ml−1, respectively). In conclusion, ingestion of a small solid carbohydrate load prior to exercise in the 4% hypohydration level resulted in prolonged high PG concentration compared to partial IV rehydration.

Restricted access

Phillip D. Tomporowski and Larry D. Jameson

Institutionalized severely and profoundly mentally retarded adults participated in two exercise programs. One group of 19 subjects performed a circuit-training regimen consisting of treadmill walking, stationary bicycle riding, rowing, and calisthenics. Exercise sessions lasted 60 minutes and were performed every third day during an 18-week training period. A second group of 19 subjects participated in an 18-week jogging regimen which consisted of running distances of 1/2, 1, or 1 1/2 miles each session. The exercise requirements in both programs were increased progressively during the course of training. Subjects adapted quickly to both exercise regimens and almost all improved their physical endurance and ability to exercise. It is suggested that the highly motivating characteristics of exercise may provide educators with a training medium through which new skills can be taught to severely and profoundly mentally retarded adults.

Restricted access

Gisela Kobberling, Louis W. Jankowski and Luc Leger

The oxygen consumption (VO2) of 30 (10 females, 20 males) legally blind adolescents and their sighted controls were compared for treadmill walking (3 mph, 4.8 km/h) and running (6 mph, 9.6 km/h). The VO2 of the visually impaired subjects averaged 24.4% and 10.8% higher than those of their same-sex age-matched controls, and 42.8% and 11.2% higher than the American College of Sports Medicine (ACSM) norms for walking (p<.01) and running (p<.05), respectively. The normal association between aerobic capacity and locomotor energy costs was evident among the sighted controls (r= .44, p<.05) but insignificant (r=.35, p>.05) for the visually impaired subjects. The energy costs of both walking and running were highest among the totally blind subjects, and decreased toward normal as a function of residual vision among the legally blind subjects. The energy costs of walking and running for blind adolescents are higher than both those of sighted controls and the ACSM norm values.

Restricted access

Ryan G. Overmayer and Matthew W. Driller

anterior fatigue in the study by Wiener et al 15 who examined 8 male participants during 10 minutes of treadmill walking at maximum walking speed and 2 minutes of quasi-isometric suspension by strapping ∼10 kg weights to both feet. The recovery protocol involved ISPC (3 min at ∼80 mm Hg) applied to 1 leg