Search Results

You are looking at 1 - 6 of 6 items for :

  • "3-methylhistidine" x
  • Refine by Access: All Content x
Clear All
Restricted access

Darren G. Candow, Natalie C. Burke, T. Smith-Palmer, and Darren G. Burke

The purpose was to compare changes in lean tissue mass, strength, and myof-brillar protein catabolism resulting from combining whey protein or soy protein with resistance training. Twenty-seven untrained healthy subjects (18 female, 9 male) age 18 to 35 y were randomly assigned (double blind) to supplement with whey protein (W; 1.2 g/kg body mass whey protein + 0.3 g/kg body mass sucrose power, N = 9: 6 female, 3 male), soy protein (S; 1.2 g/kg body mass soy protein + 0.3 g/kg body mass sucrose powder, N = 9: 6 female, 3 male) or placebo (P; 1.2 g/kg body mass maltodextrine + 0.3 g/kg body mass sucrose powder, N = 9: 6 female, 3 male) for 6 wk. Before and after training, measurements were taken for lean tissue mass (dual energy X-ray absorptiometry), strength (1-RM for bench press and hack squat), and an indicator of myofbrillar protein catabolism (urinary 3-methylhistidine). Results showed that protein supplementation during resistance training, independent of source, increased lean tissue mass and strength over isocaloric placebo and resistance training (P < 0.05). We conclude that young adults who supplement with protein during a structured resistance training program experience minimal beneficial effects in lean tissue mass and strength.

Restricted access

Janet R. Wojcik, Janet Walberg-Rankin, Lucille L. Smith, and F.C. Gwazdauskas

This study examined effects of carbohydrate (CHO), milk-based carbohydrate-protein (CHO-PRO), or placebo (P) beverages on glycogen resynthesis, muscle damage, inflammation, and muscle function following eccentric resistance exercise. Untrained males performed a cycling exercise to reduce muscle glycogen 12 hours prior to performance of 100 eccentric quadriceps contractions at 120% of 1-RM (day 1) and drank CHO (n = 8), CHO-PRO (n = 9; 5 kcal/kg), or P (n = 9) immediately and 2 hours post-exercise. At 3 hours post-eccentric exercise, serum insulin was four times higher for CHO-PRO and CHO than P (p < .05). Serum creatine kinase (CK) increased for all groups in the 6 hours post-eccentric exercise (p < .01), with the increase tending to be lowest for CHO-PRO (p < .08) during this period. Glycogen was low post-exercise (33 ± 3.7 mmol/kg ww), increased 225% at 24 hours, and tripled by 72 hours, with no group differences. The eccentric exercise increased muscle protein breakdown as indicated by urinary 3-methylhistidine and increased IL-6 with no effect of beverage. Quadriceps isokinetic peak torque was depressed similarly for all groups by 24% 24 hours post-exercise and remained 21 % lower at 72 hours (p < .01). In summary, there were no influences of any post-exercise beverage on muscle glycogen replacement, inflammation, or muscle function.

Restricted access

Stephen M. Cornish, Darren G. Candow, Nathan T. Jantz, Philip D. Chilibeck, Jonathan P. Little, Scott Forbes, Saman Abeysekara, and Gordon A. Zello

Purpose:

The authors examined the combined effects of conjugated linoleic acid (CLA), creatine (C), and whey protein (P) supplementation during strength training.

Methods:

Sixty-nine participants (52 men, 17 women; M ± SD age 22.5 ± 2.5 yr) were randomly assigned (double-blind) to 1 of 3 groups: CCP (6 g/d CLA + 9 g/d C + 36 g/d P; n = 22), CP (C + P + placebo oil; n = 25), or P (P + placebo oil; n = 22) during 5 wk of strength training (4–5 sets, 6–12 repetitions, 6 d/wk). Measurements were taken for body composition (air-displacement plethysmography), muscle thickness (ultrasound) of the flexors and extensors of the elbow and knee, 1-repetitionmaximum (1-RM) strength (leg press and bench press), urinary markers of bone resorption (N-telopeptides, NTx), myofibrillar protein catabolism (3-methylhistidine; 3-MH), oxidative stress (8-isoprostanes), and kidney function (microalbumin) before and after training.

Results:

Contrast analyses indicated that the CCP group had a greater increase in bench-press (16.2% ± 11.3% vs. 9.7% ± 17.0%; p < .05) and legpress (13.1% ± 9.9% vs. 7.7% ± 14.2%; p < .05) strength and lean-tissue mass (2.4% ± 2.8% vs. 1.3% ± 4.1%; p < .05) than the other groups combined. All groups increased muscle thickness over time (p < .05). The relative change in 3-MH (CCP –4.7% ± 70.2%, CP –0.4% ± 81.4%, P 20.3% ± 75.2%) was less in the groups receiving creatine (p < .05), with the difference for NTx also close to significance (p = .055; CCP–3.4% ± 66.6%, CP–3.9% ± 64.9%, P 26.0% ± 63.8%). There were no changes in oxidative stress or kidney function.

Conclusion:

Combining C, CLA, and P was beneficial for increasing strength and lean-tissue mass during heavy resistance training.

Restricted access

Paolo C. Colombani, Eva Kovacs, Petra Frey-Rindova, Walter Frey, Wolfgang Langhans, Myrtha Arnold, and Caspar Wenk

A field study was performed to investigate the acute influence of a milk protein hydrolysate supplemented drink (CHO+PRO) on metabolism during and after a marathon run compared to the same drink without protein (CHO). Carbohydrate metabolites and hormones were not influenced by CHO+PRO. Levels of plasma free fatty acids were significantly lower and levels of urea and most amino acids were significantly higher with CHO+PRO. Sweat urea and ammonia nitrogen excretion during the run as well as urinary 3-methylhistidine excretion during the entire exercise day was similar with both treatments. Urinary total nitrogen was significantly increased and urinary pH decreased with CHO+PRO. It was concluded that the supplemented protein was absorbed and probably at least partially oxidized during the run and that no obvious negative metabolic effects occurred. CHO+PRO did not acutely affect myofibrillar protein breakdown as assessed by the 3-methylhistidine method: however, total body protein breakdown was not measured.

Restricted access

Gustavo Monnerat, Carlos A.R. Sánchez, Caleb G.M. Santos, Dailson Paulucio, Rodolfo Velasque, Geisa P.C. Evaristo, Joseph A.M. Evaristo, Fabio C.S. Nogueira, Gilberto B. Domont, Mauricio Serrato, Antonio S. Lima, David Bishop, Antonio C. Campos de Carvalho, and Fernando A.M.S. Pompeu

. Exercise-induced endocannabinoid signaling is modulated by intensity . Eur J Appl Physiol . 2013 ; 113 ( 4 ): 869 – 875 . PubMed ID: 22990628 doi:10.1007/s00421-012-2495-5 22990628 37. Elia M , Carter A , Bacon S , Winearls CG , Smith R . Clinical usefulness of urinary 3-methylhistidine

Restricted access

George Wilson, Carl Langan-Evans, Dan Martin, Andreas M. Kasper, James P. Morton, and Graeme L. Close

reported higher measures of urinary 3-methylhistidine/creatinine and the authors cite this as evidence of greater myoprotein catabolism even when the same diet is consumed ( Iwao et al., 1996 ). In our own previous work where jockeys were prescribed a hypocaloric diet consumed as five feeds and evenly