Search Results

You are looking at 1 - 10 of 31 items for :

Clear All
Restricted access

Costas Chryssanthopoulos, Clyde Williams, Andrea Nowitz, Christina Kotsiopoulou and Veronica Vleck

This study examined the effects of a pre-exercise meal and a carbohydrate-electrolyte solution on endurance running capacity. Ten men performed 3 treadmill runs at 70% V̇O2max to exhaustion after consuming (a) a carbohydrate meal 3 h before exercise and a carbohydrate-electrolyte solution during exercise (M+C); or (b) the carbohydrate meal 3 h before exercise and water during exercise (M+W): or (c) a liquid placebo 3 h before exercise and water during exercise (P+W). Exercise time was longer in M+C (125.1 ±5.3 min; mean±SE) and M+W (111.9 ± 5.6 min) compared with P+W (102.9 ± 7.9 min;p< .01 and p < .05, respectively), and longer in M+C compared with M+W (p < .05). Serum insulin concentration at the start of exercise and carbohydrate oxidation rates during the first hour of exercise were higher, whereas plasma FFA concentrations throughout exercise were lower in M+W and M+C than in P+W (p < .01). A carbohydrate meal before exercise at 70% V̇O2max improved endurance running capacity; however, me combination of the meal and a carbohydrate-electrolyte solution during exercise further improved endurance running capacity.

Restricted access

Stavros A. Kavouras, John P. Troup and Jacqueline R. Berning

To examine the effects of a 3-day high carbohydrate (H-CHO) and low carbohydrate (L-CHO) diet on 45 min of cycling exercise, 12 endurance-trained cyclists performed a 45-min cycling exercise at 82 ± 2% VO2peak following an overnight fast, after a 6-day diet and exercise control. The 7-day protocol was repeated under 2 randomly assigned dietary trials H-CHO and L-CHO. On days 1–3, subjects consumed a mixed diet for both trials and for days 4–6 consumed isocaloric diets that contained either 600 g or 100 g of carbohydrates, for the HCHO and the L-CHO trials, respectively. Muscle biopsy samples, taken from the vastus lateralis prior to the beginning of the 45-min cycling test, indicated that muscle glycogen levels were significantly higher (p < .05) for the H-CHO trial (104.5 ± 9.4 mmol/kg wet wt) when compared to the L-CHO trial (72.2 ± 5.6 mmol/kg wet wt). Heart rate, ratings of perceived exertion, oxygen uptake, and respiratory quotient during exercise were not significantly different between the 2 trials. Serum glucose during exercise for the H-CHO trial significantly increased (p < .05) from 4.5 ± 0.1 mmol · L−1 (pre) to 6.7 ± 0.6 mmol · L−1 (post), while no changes were found for the L-CHO trial. In addition, post-exercise serum glucose was significantly greater (p < .05) for the H-CHO trial when compared to the L-CHO trial (H-CHO, 6.7 ± 0.6 mmol · L−1; L-CHO, 5.2 ± 0.2 mmol · L−1). No significant changes were observed in serum free fatty acid, triglycerides, or insulin concentration in either trial. The findings suggest that L-CHO had no major effect on 45-min cycling exercise that was not observed with H-CHO when the total energy intake was adequate.

Restricted access

Jens Bangsbo, Fedon Marcello Iaia and Peter Krustrup

The physical demands in soccer have been studied intensively, and the aim of the present review is to provide an overview of metabolic changes during a game and their relation to the development of fatigue. Heart-rate and body-temperature measurements suggest that for elite soccer players the average oxygen uptake during a match is around 70% of maximum oxygen uptake (VO2 max). A top-class player has 150 to 250 brief intense actions during a game, indicating that the rates of creatine-phosphate (CP) utilization and glycolysis are frequently high during a game, which is supported by findings of reduced muscle CP levels and several-fold increases in blood and muscle lactate concentrations. Likewise, muscle pH is lowered and muscle inosine monophosphate (IMP) elevated during a soccer game. Fatigue appears to occur temporarily during a game, but it is not likely to be caused by elevated muscle lactate, lowered muscle pH, or change in muscle-energy status. It is unclear what causes the transient reduced ability of players to perform maximally. Muscle glycogen is reduced by 40% to 90% during a game and is probably the most important substrate for energy production, and fatigue toward the end of a game might be related to depletion of glycogen in some muscle fibers. Blood glucose and catecholamines are elevated and insulin lowered during a game. The blood free-fatty-acid levels increase progressively during a game, probably reflecting an increasing fat oxidation compensating for the lowering of muscle glycogen. Thus, elite soccer players have high aerobic requirements throughout a game and extensive anaerobic demands during periods of a match leading to major metabolic changes, which might contribute to the observed development of fatigue during and toward the end of a game.

Restricted access

Ine Wigernæs, Sigmund B. Strømme and Arne T. Høstmark

The present study investigated the effect of active recovery (AR) as compared to rest recovery (RR) upon FFA concentrations following moderate- (MI) or high-intensity (HI) running. Fourteen well-trained males (23.7±6 years. V̇O2max = 69.5±1.8ml · min−1kg−1) were randomly assigned into two trials (HI = 30 min at 82% of V̇O2max; MI = 60 min at 75% of V̇O2max). Within each group, the subject completed two sets of experiments of running followed by either AR (15 min running at 50% of V̇O2max) or RR (complete rest in the supine position). Plasma volume changes after the exercise did not deviate between the AR or RR trials. In both the HI and Ml trials, AR resulted in lower FFA peaks and lower overall FFA concentrations while performing AR (p<.05). However, upon discontinuing AR. there was a rise in the FFA concentration. At 120-min post-exercise, the FFA concentrations after AR and RR were not significantly different. The changes in the FFA/albumin ratio were similar to the FFA responses. It is concluded that AR may counteract the rise in FFA 5–15 minutes after exercise.

Restricted access

Mahmoud S. El-Sayed, Angelheart J.M. Rattu, Xia Lin and Thomas Reilly

We examined the effects of active warm-down (AWD) and carbohydrate ingestion on plasma levels of free fatty acids (FFAs) and glucose changes into recovery following prolonged submaximal exercise. Subjects in Group 1 cycled at 70% of maximal oxygen uptake (VO2max); carbohydrate (CHO) or placebo (PLA) was ingested 15 min before and 45 min during exercise. In the AWD experiment, exercise was followed immediately by an AWD and subjects were given a placebo solution. Group 2 subjects consumed CHO or PLA at 75 min during and after exercise at 70% VO2max. ANOVA revealed a significant decrease in blood glucose levels only in Group 1, with a concomitant increase in FFA concentrations during exercise in both groups. Carbohydrate ingestion in Groups 1 and 2 significantly decreased the normal response of FFAs during exercise and markedly reduced the normal elevation of FFAs in recovery. AWD following submaximal exercise had no effect on plasma FFA elevations in recovery. These results suggest that carbohydrate ingestion, but not active warm-down, attenuates FFA elevations in recovery.

Restricted access

Loretta DiPietro, Catherine W. Yeckel and James Dziura


Few studies have compared long-term moderate-intensity aerobic versus light-resistance training on serial improvements in glucose tolerance in older people.


Healthy, inactive older (74 ± 5 [SD] years) women (N = 20) were randomized into either a high-volume, moderate-intensity aerobic (ATM, n = 12) or a lower-intensity resistance training (RTL, n = 8) group. Both groups exercised under supervision 4 times per week for 45- to 60-minute sessions over 9 months. Measurements of plasma glucose, insulin, and free fatty acid (FFA) responses to an oral glucose tolerance test (OGTT) were performed at baseline and at 3, 6, and 9 months 48 hours after the last exercise session.


We observed significant improvements in 2-hour glucose concentrations at 3, 6, and 9 months among women in the RTL (152 ± 42 vs 134 ± 33 vs 134 ± 24 vs 130 ± 27 mg · dL−1; P < .05), but not the ATM (151 ± 25 vs 156 ± 37 vs 152 ± 40 vs 155 ± 39 mg · dL−1) group. These improvements were accompanied by an 18% (P < .07) decrease in basal FFA concentrations in the RTL group, whereas basal and 30-minute FFA concentrations increased (P < .05) after training in the ATM group.


These findings suggest that the net physiological benefits of exercise might have been blunted in the ATM group, owing to higher circulating levels of FFA, which might have temporarily interfered with insulin action.

Restricted access

Julia H. Goedecke, Richard Elmer, Steven C. Dennis, Ingrid Schloss, Timothy D. Noakes and Estelle V. Lambert

The effects of ingesting different amounts of medium-chain triacylglycerol (MCT) and carbohydrate (CHO) on gastric symptoms, fuel metabolism, and exercise performance were measured in 9 endurance-trained cyclists. Participants, 2 hr after a standardized lunch, cycled for 2 hr at 63% of peak oxygen consumption and then performed a simulated 40-km time trial (T trial). During the rides, participants ingested either 10% 14C-glucose (GLU), 10% 14C-GLU + 1.72%MCT(LO-MCT), or 10% l4C-GLU + 3.44%MCT(HI-MCT) solutions: 400 ml at the start of exercise and then 100 ml every lOmin.MCTingestiondid not affect gastrointestinal symptoms. It only raised serum free fatty acid (FFA) and ß-hydroxybutyrate concentrations. Higher FFA and ß-hydroxybutyrate concentrations with MCT ingestion did not affect fuel oxidation or T-trial performance. The high CHO content of the pretrial lunch increased starting plasma insulin levels, which may have promoted CHO oxidation despite elevated circulating FFA concentrations with MCT ingestion.

Restricted access

Darlene A. Sedlock, Man-Gyoon Lee, Michael G. Flynn, Kyung-Shin Park and Gary H. Kamimori

Literature examining the effects of aerobic exercise training on excess postexercise oxygen consumption (EPOC) is sparse. In this study, 9 male participants (19–32 yr) trained (EX) for 12 wk, and 10 in a control group (CON) maintained normal activity. VO2max, rectal temperature (Tre), epinephrine, norepinephrine, free fatty acids (FFA), insulin, glucose, blood lactate (BLA), and EPOC were measured before (PRE) and after (POST) the intervention. EPOC at PRE was measured for 120 min after 30 min of treadmill running at 70% VO2max. EX completed 2 EPOC trials at POST, i.e., at the same absolute (ABS) and relative (REL) intensity; 1 EPOC test for CON served as both the ABS and REL trial because no significant change in VO2max was noted. During the ABS trial, total EPOC decreased significantly (p < .01) from PRE (39.4 ± 3.6 kcal) to POST (31.7 ± 2.2 kcal). Tre, epinephrine, insulin, glucose, and BLA at end-exercise or during recovery were significantly lower and FFA significantly higher after training. Training did not significantly affect EPOC during the REL trial; however, epinephrine was significantly lower, and norepinephrine and FFA, significantly higher, at endexercise after training. Results indicate that EPOC varies as a function of relative rather than absolute metabolic stress and that training improves the efficiency of metabolic regulation during recovery from exercise. Mechanisms for the decreased magnitude of EPOC in the ABS trial include decreases in BLA, Tre, and perhaps epinephrine-mediated hepatic glucose production and insulin-mediated glucose uptake.

Restricted access

Lauree M. Grubbs

Women, considering swimming as a form of exercise to lose weight, have been discouraged from doing so, since researchers suggest that swimming does not burn fat as efficiently as land exercise. The purpose of this study was to compare carbohydrate and fat utilization by women engaging in two different forms of exercise, walking and swimming, at the same intensity and duration. Subjects were 20 moderately trained female subjects, walkers (W) = 10 and swimmers (S) = 10; ages 18-40 years. Measurements of blood free fatty acids (FFA), glycerol, lactate, glucose, free fatty acid turnover (FFAT), respiratory quotient (RQ), and fat oxidation were made during 60 minutes of walking or swimming at the same exercise intensity. Multivariate analysis of variance determined no significant differences between groups in net energy expenditure (NEE), RQ, fat oxidation, blood FFA, glycerol, glucose, and FFAT(p > .05). There was a significant difference between groups in blood lactic acid levels (p < .01). Since it was found that swimming and walking at the same duration and intensity bum similar amounts of fat and carbohydrate as energy sources during exercise, women may find swimming to be a viable form of exercise for weight control.

Restricted access

William A. Burgess, J. Mark Davis, William P. Bartoli and Jeffrey A. Woods

The effects of ingesting a low dose of CHO on plasma glucose, glucoregulatory hormone responses, and performance during prolonged cycling were investigated. Nine male subjects cycled for 165 min at ≈67% peak VO2 followed by a two-stage performance ride to exhaustion on two occasions in the laboratory. Every 20 min during exercise, subjects consumed either a flavored water placebo (P) or a dilute carbohydrate beverage (C). Blood samples were collected immediately before, every 20 min throughout, and immediately after exercise. Plasma was analyzed for glucose, lactate, free fatty acids (FFA), and various glucoregulatory hormones. VO2, RER, heart rate, perceived exertion, and exercise performance were also measured. Lactate, FFA, epinephrine, norepinephrine, ACTH, cortisol, and glucagon increased with exercise whereas glucose and insulin decreased (p≤05). Except for a small difference in glucose at 158 min of exercise and at exhaustion, no significant differences were found between drinks for any of the variabfes studied (p ≥ 05). Ingestion of 13 g carbohydrate per hour is not sufficient to maintain plasma glucose, attenuate the glucoregulatory hormone response, and improve performance during prolonged moderate intensity cycling.