Search Results

You are looking at 1 - 10 of 71 items for :

  • "Paralympic sport" x
  • Refine by Access: All Content x
Clear All
Restricted access

Jacqueline Martins Patatas, Jens De Rycke, Veerle De Bosscher, and Rafael Lima Kons

in Paralympic sport. Those include the disability-related 1 nuances, such as the classification system, different types of impairment (visual, intellectual, and physical), and nature of the impairment (acquired impairment [AI] or congenital impairment [CI]) that influence sport participation

Restricted access

Rafael L. Kons, Kai Krabben, David L. Mann, Gabriela Fischer, and Daniele Detanico

Judo for athletes with vision impairment (VI judo) is a Paralympic sport that follows the same rules as Olympic judo but with one main exception, as the match is initiated with athletes positioning their grips on the opponents’ jacket ( judogi ; International Paralympic Committee, 2018 ). This

Restricted access

Jonpaul Nevin and Paul Smith

physical disability. Therefore, the knowledge that stems from applied case studies provides valuable information to help guide best practices within this exciting and liberating Paralympic sport. While the majority of trained handcyclists compete in organized road races and time trials, others focus their

Restricted access

Barry S. Mason, Viola C. Altmann, and Victoria L. Goosey-Tolfrey

, 2018. 2. Tweedy SM , Vanlandewijck YC . International Paralympic Committee position stand—background and scientific principles of classification in Paralympic sport . Brit J Sports Med . 2011 ; 45 : 259 – 269 . doi:10.1136/bjsm.2009.065060 10.1136/bjsm.2009.065060 3. Rhodes JM , Mason BS

Open access

Scott Douglas

Since its humble beginnings at the end of World War II, wheelchair basketball has incorporated a classification system for its players. The classification system ensures equal representation among team players and fosters positions and roles that are unique to the various levels of disability represented on a team (Goodwin et al., 2009). The increasingly competitive nature of this global game has necessitated an increasingly high level of coaching expertise. The purpose of this commentary is to take a practical look at the International Wheelchair Basketball Federation Player Classification System and the challenges it presents to a wheelchair basketball coach during the chaos of a game.

Restricted access

David S. Haydon, Ross A. Pinder, Paul N. Grimshaw, and William S.P. Robertson

Purpose: Maximal acceleration from standstill has been identified as a key performance indicator in wheelchair rugby; however, the impact of classification and kinematic variables on performance has received limited attention. This study aimed to investigate kinematic variables during maximal acceleration, with level of activity limitation accounted for using sport-classification scores. Methods: Based on their sporting classification scores, which reflect combined trunk, arm, and hand function, 25 elite wheelchair rugby players were analyzed in high-, mid-, and low-point groups before completing five 5-m sprints from a stationary position. Inertial measurement units and video analysis were used to monitor key kinematic variables. Results: Significant differences in kinematic variables were evident across the classification groups, particularly for the first stroke-contact angle (1-way ANOVA F 2,122 = 51.5, P < .05) and first stroke time (F 2,124 = 18.3, P < .05). High-point players used a first stroke-contact angle that was closer to top dead center of the wheel than either other group, while also using a shorter overall stroke time than low-point players. A linear mixed-effects model was used to investigate how kinematic variables influenced performance, with results suggesting that increased release angles (ie, farther around the wheel) and decreased stroke angles resulted in larger peak accelerations. Further investigation revealed that these results are likely influenced by strong relationships for the high-point group, as there was often no clear trend evident for midpoint and low-point groups. Conclusion: Findings show that various propulsion approaches exist across classification groups, with this information potentially informing individual wheelchair setups and training programs.

Restricted access

Jonpaul Nevin and Paul M. Smith

Purpose: To explore the relationship between absolute and relative upper-body strength and selected measures of handcycling performance. Methods: A total of 13 trained H3/H4-classified male handcyclists (mean [SD] age 37 [11] y; body mass 76.6 [10.1] kg; peak oxygen consumption 2.8 [0.6] L·min−1; relative peak oxygen consumption 36.5 [10] mL·kg·min−1) performed a prone bench-pull and bench-press 1-repetition-maximum strength assessment, a 15-km individual time trial, a graded exercise test, and a 15-second all-out sprint test. Relationships between all variables were assessed using Pearson correlation coefficient. Results: Absolute strength measures displayed a large correlation with gross mechanical efficiency and maximum anaerobic power output (P = .05). However, only a small to moderate relationship was identified with all other measures. In contrast, relative strength measures demonstrated large to very large correlations with gross mechanical efficiency, 15-km time-trial velocity, maximum anaerobic power output, peak aerobic power output, power at a fixed blood lactate concentration of 4 mmol·L−1, and peak oxygen consumption (P = .05). Conclusion: Relative upper-body strength demonstrates a significant relationship with time-trial velocity and several handcycling performance measures. Relative strength is the product of one’s ability to generate maximal forces relative to body mass. Therefore, the development of one’s absolute strength combined with a reduction in body mass may influence real-world handcycling race performance.

Restricted access

Louise Croft, Suzanne Dybrus, John Lenton, and Victoria Goosey-Tolfrey

Purpose:

To examine the physiological profiles of wheelchair basketball and tennis and specifically to: (a) identify if there are differences in the physiological profiles of wheelchair basketball and tennis players of a similar playing standard, (b) to determine whether the competitive physiological demands of these sports differed (c) and to explore the relationship between the blood lactate [Bla] response to exercise and to identify the sport specific heart rate (HR) training zones.

Methods:

Six elite athletes (4 male, 2 female) from each sport performed a submaximal and VO2 peak test in their sport specific wheelchair. Heart rate, VO2, and [Bla] were measured. Heart rate was monitored during international competitions and VO2 was calculated from this using linear regression equations. Individual HR training zones were identified from the [Bla–] profile and time spent within these zones was calculated for each match.

Results:

Despite no differences in the laboratory assessment of HRpeak, the VO2peak was higher for the basketball players when compared with the tennis players (2.98 ± 0.91 vs 2.06 ± 0.71; P = .08). Average match HR (163 ± 11 vs 146 ± 16 beats-min–1; P = .06) and average VO2 (2.26 ± 0.06 vs 1.36 ± 0.42 L-min-1; P = .02) were higher during actual playing time of basketball when compared with whole tennis play. Consequently, differences in the time spent in the different training zones within and between the two sports existed (P < .05).

Conclusions:

Wheelchair basketball requires predominately high-intensity training, whereas tennis training requires training across the exercise intensity spectrum.

Restricted access

Jonpaul Nevin and Paul M. Smith

Purpose: The aim of this study was to investigate the relationship between selected anthropometric, physiological, and upper-body strength measures and 15-km handcycling time-trial (TT) performance. Methods: Thirteen trained H3/H4 male handcyclists performed a 15-km TT, graded exercise test, 15-second all-out sprint, and 1-repetition-maximum assessment of bench press and prone bench pull strength. Relationship between all variables was assessed using a Pearson correlation coefficient matrix with mean TT velocity representing the principal performance outcome. Results: Power at a fixed blood lactate concentration of 4 mmol·L−1 (r = .927; P < .01) showed an extremely large correlation with TT performance, whereas relative V˙O2peak (peak oxygen uptake) (r = .879; P < .01), power-to-mass ratio (r = .879; P < .01), peak aerobic power (r = .851; P < .01), gross mechanical efficiency (r = 733; P < .01), relative prone bench pull strength (r = .770; P = .03) relative bench press strength (r = .703; P = .11), and maximum anaerobic power (r = .678; P = .15) all demonstrated a very large correlation with performance outcomes. Conclusion: Findings of this study indicate that power at a fixed blood lactate concentration of 4 mmol·L−1, relative V˙O2peak, power-to-mass ratio, peak aerobic power, gross mechanical efficiency, relative upper-body strength, and maximum anaerobic power are all significant determinants of 15-km TT performance in H3/H4 handcyclists.

Restricted access

Jennifer L. Krempien and Susan I. Barr

Energy intakes of adults with spinal cord injury (SCI) have been reported to be relatively low, with many micronutrients below recommended amounts, but little is known about the diets of athletes with SCI. The purpose of this cross-sectional, observational study was to assess energy intakes and estimate the prevalence of dietary inadequacy in a sample of elite Canadian athletes with SCI (n = 32). Three-day self-reported food diaries completed at home and training camp were analyzed for energy (kcal), macronutrients, vitamins, and minerals and compared with the dietary reference intakes (DRIs). The prevalence of nutrient inadequacy was estimated by the proportion of athletes with mean intakes below the estimated average requirement (EAR). Energy intakes were 2,156 ± 431 kcal for men and 1,991 ± 510 kcal for women. Macronutrient intakes were within the acceptable macronutrient distribution ranges. While at training camp, >25% of men had intakes below the EAR for calcium, magnesium, zinc, riboflavin, folate, vitamin B12, and vitamin D. Thiamin, riboflavin, calcium, and vitamin D intakes were higher at home than training camp. Over 25% of women had intakes below the EAR for calcium, magnesium, folate, and vitamin D, with no significant differences in mean intakes between home and training camp. Vitamin/mineral supplement use significantly increased men’s intakes of most nutrients but did not affect prevalence of inadequacy. Women’s intakes did not change significantly with vitamin/mineral supplementation. These results demonstrate that athletes with SCI are at risk for several nutrient inadequacies relative to the DRIs.