Search Results

You are looking at 1 - 10 of 148 items for :

  • All content x
Clear All
Restricted access

Iulian B. Dragusin and Craig A. Horswill

Sports drinks have been implicated in contributing to obesity and chronic diseases by providing surplus calories and excess sugars. Using existing literature we compared energy intake from sports drinks consumed during exercise with the exercise-induced calorie expenditure to determine whether sports drink use might eliminate the energy deficit and jeopardize conditions for improved metabolic fitness. We identified 11 published studies that compared sport drink consumption to placebo during exercise with a primary focused on the effect of sport drinks or total carbohydrate content on enhancing physical performance. Energy expenditure (EE) was calculated using VO2, RER, and exercise duration for the exercise protocol. Energy ingestion (EI) was determined using the carbohydrate dosing regimen administered before and during the exercise protocol. A two-tailed t test was used to test whether the energy balance (EI-EE) was different from zero (alpha level = 0.05). Sport drink consumption during aerobic exercise of sufficient duration (≥ 60 min) did not abolish the energy deficit (p < .001). Mean ± SD were EE, 1600 ± 639 Cal; EI, 394 ± 289 Cal; and EI-EE,-1206+594 Cal; VO2, 3.05 ± 0.55 L/min; RER, 0.91 ± 0.04; exercise duration 110 ± 42 min. Ingesting sports drinks to enhance performance did not abolish the caloric deficit of aerobic exercise. Sports drinks can be used in accordance with research protocols that typically provide 30–60 g of carbohydrate per hour when exercising at adequate durations for moderate to high intensity and still maintain a substantive caloric deficit.

Restricted access

Benoit Capostagno and Andrew Bosch

This study examined the differences in fat and carbohydrate oxidation during running and cycling at the same relative exercise intensities, with intensity determined in a number of ways. Specifically, exercise intensity was expressed as a percentage of maximum workload (WLmax), maximum oxygen uptake (%VO2max), and maximum heart rate (%HRmax) and as rating of perceived exertion (RPE). Ten male triathletes performed maximal running and cycling trials and subsequently exercised at 60%, 65%, 70%, 75%, and 80% of their WLmax. VO2, HR, RPE, and plasma lactate concentrations were measured during all submaximal trials. Fat and carbohydrate oxidation were calculated from VO2 and VCO2 data. A 2-way ANOVA for repeated measures was used to determine any statistically significant differences between exercise modes. Fat oxidation was shown to be significantly higher in running than in cycling at the same relative intensities expressed as either %WLmax or %VO2max. Neither were there any significant differences in VO2max and HRmax between the 2 exercise modes, nor in submaximal VO2 or RPE between the exercise modes at the same %WLmax. However, heart rate and plasma lactate concentrations were significantly higher when cycling at 60% and 65% and 65–80%WLmax, respectively. In conclusion, fat oxidation is significantly higher during running than during cycling at the same relative intensity expressed as either %WLmax or %VO2max.

Restricted access

Robert McMurray, David K. Williams, and Claudio L. Battaglini

Seven highly trained male triathletes, aged 18 to 35 years, were tested during two simulated Olympic distance triathlons to determine whether run performance was enhanced when consuming 177 ml of water at 8, 16, 24, and 32 kilometers (Early Trials) compared to consumption at 10, 20, 30, and 40 kilometers (Late Trials), during the cycling segment of the triathlon. Swim times for 1500 m were similar between trials; 40-km cycling times were ~10 s faster during the Late trials; however, 10-km run times were faster during the Early Trials (P < 0.02). No significant differences between run trials were found for the rating of perceived exertion, oxygen uptake, heart rate, and change in urine specific gravity. It was concluded that the consumption of fluids earlier in the cycle phase of the Olympic distance triathlon benefits the run and overall performance time.

Restricted access

Mark H. Roltsch, Judith A. Flohr, and Patricia B. Brevard

The purpose of this study was to examine the metabolic consequences of a moderate variation in dietary fat content of male endurance athletes during submaximal exercise. Six males (age, 29.8 ± 11 years; weight, 72.3 ± 10 kg) · with an average maximum oxygen uptake (V̇O2max) of 66 ± 10 ml/kg/min were tested on their normal diet and 3 experimental diets. The energy contributions from protein, carbohydrates, and fats were 16/59/22 (3% alcohol), 14/53/33, 13/72/15, and 16/61/23% for the normal diet (N), fat supplemented diet (F), high carbohydrate diet (C), and adjusted normal diet (AN), respectively. The F diet was designed to significantly increase fat content compared to the normal diet and be easily maintained by the athletes. Caloric content of the F, C, and AN diets were adjusted to meet estimated total daily energy expenditure. The difference between the N and AN diets is that the AN has been adjusted to meet estimated total daily energy expenditure. The diets were randomly assigned after substrate utilization testing on the N diet and were consumed for 7 days prior to testing. Substrate utilization was recorded at steady state (73 ± 1.4% of V̇O2max) while running on a treadmill for 40 min. There were no significant differences in respiratory exchange ratio between any of the dietary manipulations. No significant differences were observed for lactate, V̇O2, or HR during submaximal testing on the N, F, C, and AN diets. These data indicate that a fat supplemented diet did not affect substrate utilization during 40 min of steady-state submaximal exercise when compared to a high carbohydrate diet or the participant’s normal and adjusted normal diets.

Restricted access

Glen E. Duncan and Edward T. Howley

Metabolic and perceptual responses to cycle training were investigated in children in a training group (TG, N = 10) and control group (CG, N = 13). Prior to training, aerobic power (VO2peak) was assessed, and children performed submaximal exercise at graded power outputs. Substrate use was calculated for each level using the respiratory exchange ratio (RER) and metabolic rate, and ratings of perceived exertion (RPE) were obtained to estimate perceptual effort. Training consisted of 12 sessions (three 10-min work bouts 3 times/week, 50% VO2peak) on a cycle ergometer. After 4 weeks, RER and RPE were reevaluated at the same absolute intensities. Overall difference scores indicated a decrease in RER and RPE in the TG and an increase in RER with * no change in RPE in the CG. These data demonstrate that short-term cycle training in children results in enhanced fat use and diminished perception of effort during submaximal exercise.

Restricted access

Glen E. Duncan and Edward T. Howley

This review addresses issues related to substrate metabolism in children and how this information compares and contrasts to that of adults. The relative percent of fat and carbohydrate (CHO) utilized by an individual can be estimated from respiratory exchange ratio (RER) values between 0.7 (100% fat, 0% CHO) and 1.0 (100% CHO, 0% fat). The rise in RER towards 1.0 in relation to increased exercise intensity demonstrates the augmented role of CHO as an energy source for muscle; however, fat oxidation also represents a major source of energy during exercise of moderate-to-heavy intensity. Preliminary reports suggest that children demonstrate patterns of fat and CHO use in response to exercise intensity similar to those of adults and also show a reduction in RER at submaximal exercise intensities after training. The use of the “crossover concept" may simplify the presentation of how metabolism is affected by exercise intensity and training.

Restricted access

Amy Warren, Erin J. Howden, Andrew D. Williams, James W. Fell, and Nathan A. Johnson

Postexercise fat oxidation may be important for exercise prescription aimed at optimizing fat loss. The authors examined the effects of exercise intensity, duration, and modality on postexercise oxygen consumption (VO2) and substrate selection/respiratory-exchange ratio (RER) in healthy individuals. Three experiments (n = 7 for each) compared (a) short- (SD) vs. long-duration (LD) ergometer cycling exercise (30 min vs. 90 min) matched for intensity, (b) low- (LI) vs. high-intensity (HI) cycling (50% vs. 85% of VO2max) matched for energy expenditure, and (c) continuous (CON) vs. interval (INT) cycling matched for energy expenditure and mean intensity. All experiments were administered by crossover design. Altering exercise duration did not affect postexercise VO2 or RER kinetics (p > .05). However, RER was lower and fat oxidation was higher during the postexercise period in LD vs. SD (p < .05). HI vs. LI resulted in a significant increase in total postexercise energy expenditure and fat oxidation (p < .01). Altering exercise modality (CON vs. INT) did not affect postexercise VO2, RER, or fat oxidation (p > .05). These results demonstrate that postexercise energy expenditure and fat oxidation can be augmented by increasing exercise intensity, but these benefits cannot be exploited by undertaking interval exercise (1:2-min work:recovery ratio) when total energy expenditure, duration, and mean intensity remain unchanged. In spite of the apparent benefit of these strategies, the amount of fat oxidized after exercise may be inconsequential compared with that oxidized during the exercise bout.

Restricted access

Katherine E. Robben, David C. Poole, and Craig A. Harms

A two-test protocol (incremental/ramp (IWT) + supramaximal constant-load (CWR)) to affirm max and obviate reliance on secondary criteria has only been validated in highly fit children. In girls (n = 15) and boys (n = 12) with a wide range of VO2max (17–47 ml/kg/min), we hypothesized that this procedure would evince a VO2-WR plateau and unambiguous VO2max even in the presence of expiratory flow limitation (EFL). A plateau in the VO2-work rate relationship occurred in 75% of subjects irrespective of EFL There was a range in RER at max exercise for girls (0.97–1.14; mean 1.06 ± 0.04) and boys (0.98−1.09; mean 1.03 ± 0.03) such that 3/15 girls and 2/12 boys did not achieve the criterion RER. Moreover, in girls with RER > 1.0 it would have been possible to achieve this criterion at 78% VO2max. Boys achieved 92% VO2max at RER = 1.0. This was true also for HRmax where 8/15 girls’ and 6/12 boys’ VO2max would have been rejected based on HRmax being < 90% of age-predicted HRmax. In those who achieved the HRmax criterion, it represented a VO2 of 86% (girls) and 87% (boys) VO2max. We conclude that this two-test protocol confirms VO2max in children across a threefold range of VO2max irrespective of EFL and circumvents reliance on secondary criteria.

Restricted access

Jerry Mayo, Brian Lyons, Kendal Honea, John Alvarez, and Richard Byrum


Rehabilitation specialists should understand cardiovascular responses to different movement patterns.


To investigate physiological responses to forward- (FM), backward- (BM), and lateral-motion (LM) exercise at self-selected intensities.


Within-subjects design to test independent variable, movement pattern; repeated-measures ANOVA to analyze oxygen consumption (VO2), heart rate (HR), respiratory-exchange ratio (RER), and ratings of perceived exertion (RPE).


10 healthy women.


VO2 and HR were significantly higher during LM than during FM and BM exercise. The respective VO2 (ml · kg · min–1) and HR (beats/min) values for each condition were FM 25.19 ± 3.6, 142 ± 11; BM 24.24 ± 2.7, 145 ± 12; and LM 30.5 ± 4.6, 160 ± 13. No differences were observed for RER or RPE.


At self-selected intensities all 3 modes met criteria for maintaining cardiovascular fitness. Practitioners can use these results to develop rehabilitation programs based on clients’ perception and level of discomfort

Restricted access

Danette M. Rogers, Kenneth R. Turley, Kathleen I. Kujawa, Kevin M. Harper, and Jack H. Wilmore

This study was designed to examine the reliability and variability of running economy in 7-, 8-, and 9-year-old boys and girls. Forty-two children (21 boys and 21 girls) participated in two submaximal treadmill tests to determine running economy at two absolute work rates (5 mph and 6 mph). Reliability and variability were determined for oxygen consumption (V̇O2), heart rate (HR), respiratory exchange ratio (RER), stride frequency, and stride length. With the exception of RER and V̇O2 relative to body surface area, reliability estimates were moderate to high (.80 to .94). Mean variability of all responses were similar to those reported for adults, however, the range of intraindividual variability was slightly greater. These results indicate that two submaximal measurements result in higher reliability estimates than a single test and may therefore provide a more appropriate description of a child’s running economy.