Search Results

You are looking at 1 - 10 of 193 items for :

  • "absorption" x
Clear All
Restricted access

Kevin Deschamps, Giovanni Matricali, Maarten Eerdekens, Sander Wuite, Alberto Leardini and Filip Staes

observation is not yet fully understood, but may partly be explained by an earlier onset of absorption at the ankle joint. 20 However, it is reasonable to assume that this transient peak is absorbed also by the other joints of the foot. Unfortunately, the experimental mechanical analysis of these joints has

Restricted access

Akihiro Tamura, Kiyokazu Akasaka and Takahiro Otsudo

landing may cause ACL injuries. 9 Loads on knee joints during landings can be decreased by employing strategies to absorb landing stresses throughout the lower-extremities. Some researchers have measured the relative contributions of the lower-extremity joints for energy absorption during landing. 10

Restricted access

Gabriella A.M. Ten Have, Marielle P.K.J. Engelen, Yvette C. Luiking and Nicolaas E.P. Deutz

The small intestine acts as interface and regulator between the gut lumen and the rest of the body and controls the degree and rate of transport of amino acids coming from dietary protein via the portal vein to the liver and the systemic circulation. To measure protein absorption, kinetics multicatheter animal (pig) models in combination with amino acid tracer technology are available. Dietary factors infuence the absorption rates from the lumen to the gut, metabolism of dietary component in the gut, and the release of amino acids to the portal circulation from digested protein. In a balanced-protein meal, the gut dietary amino acid utilization (30–50%) for gut protein synthesis will result in a labile protein pool in the gut that can be benefcial during the postabsorptive state. To enhance gut retention, amount and quality of protein and the presence of carbohydrate are major factors. Besides this the use of a slowly digestible protein or the presence of fber in the meal can increase retention further. During the absorption of low-quality protein meals, fewer amino acids are utilized by the gut, resulting in higher amounts of amino acid release to the portal circulation. Malnutrition or starvation, protein depletion, defciencies of specifc nutrients, or illness such as sepsis all inhibit the growth and change protein turnover of the intestinal mucosa and therefore affect absorption kinetics. Therefore, the kind of protein meal that has the most optimal absorption kinetics (the most benefcial) for gut and for the rest of the body depends on these (patho)physiological circumstances. Despite the absence of different absorption kinetics between protein, peptides, and amino acids, they could be benefcial in specifc circumstances.

Restricted access

James A. Lang, Carl V. Gisolfi and G. Patrick Lambert

The purpose of this study was to determine the effects of exercise intensity on active and passive intestinal glucose absorption. Eight trained runners (age = 23 ± 2 y; VO2max = 62.1 ± 5.8 mL · kg−1 · min−1) performed a 1 h resting experiment and three 1 h treadmill experiments at 30, 50, or 70% VO2max in a thermoneutral environment. Immediately prior to each experiment, euhydrated subjects ingested a solution containing two non-metabolizable glucose analogs, 3-O-methyl-D-glucose (3MG; actively absorbed; 5 g) and D-xylose (passively absorbed; 5 g). During the following 5 h, all urine was collected and the amount of 3MG and D-xylose in the urine was determined. Using repeated measures ANOVA, a significant (P < 0.05) reduction in urinary excretion of each carbohydrate was observed at 70% VO2max compared to the other intensities suggesting that both active and passive intestinal absorption of glucose may be reduced during prolonged running at this intensity.

Restricted access

Jennifer Rogers, Robert W. Summers and G. Patrick Lambert

The purpose of this study was to determine if lowering carbohydrate (CHO) concentration in a sport drink influences gastric emptying, intestinal absorption, or performance during cycle ergometry (85 min, 60% VO2peak). Five subjects (25 ± 1 y, 61.5 ± 2.1 mL · kg−1 · min−1 VO2peak) ingested a 3% CHO, 6% CHO, or a water placebo (WP) beverage during exercise. Gastric emptying was determined by repeated double sampling and intestinal absorption by segmental perfusion. Total solute absorption and plasma glucose was greater for 6% CHO; however, neither gastric emptying, intestinal water absorption, or 3-mi time trial performance (7:58 ± 0:33 min, 8:13 ± 0:25 min, and 8:25 ± 0:29 min, respectively, for 6% CHO, 3% CHO, and WP) differed among solutions. These results indicate lowering the CHO concentration of a sport drink from 6% CHO does not enhance gastric emptying, intestinal water absorption, or time trial performance, but reduces CHO and total solute absorption.

Restricted access

Xiaocai Shi and Dennis H. Passe

The purpose of this study is to summarize water, carbohydrate (CHO), and electrolyte absorption from carbohydrate- electrolyte (CHO-E) solutions based on all of the triple-lumen-perfusion studies in humans since the early 1960s. The current statistical analysis included 30 reports from which were obtained information on water absorption, CHO absorption, total solute absorption, CHO concentration, CHO type, osmolality, sodium concentration, and sodium absorption in the different gut segments during exercise and at rest. Mean differences were assessed using independent-samples t tests. Exploratory multiple-regression analyses were conducted to create prediction models for intestinal water absorption. The factors influencing water and solute absorption are carefully evaluated and extensively discussed. The authors suggest that in the human proximal small intestine, water absorption is related to both total solute and CHO absorption; osmolality exerts various impacts on water absorption in the different segments; the multiple types of CHO in the ingested CHO-E solutions play a critical role in stimulating CHO, sodium, total solute, and water absorption; CHO concentration is negatively related to water absorption; and exercise may result in greater water absorption than rest. A potential regression model for predicting water absorption is also proposed for future research and practical application. In conclusion, water absorption in the human small intestine is influenced by osmolality, solute absorption, and the anatomical structures of gut segments. Multiple types of CHO in a CHO-E solution facilitate water absorption by stimulating CHO and solute absorption and lowering osmolality in the intestinal lumen.

Restricted access

Hung-Ta Chiu and Tzyy-Yuang Shiang

The purpose of this study was to investigate the effects of insoles and additional shock absorption foam on the cushioning properties of various sport shoes with an impact testing method. Three commercial sport shoes were used in this study, and shock absorption foam (TPE5020; Vers Tech Science Co. Ltd., Taiwan) with 2-mm thickness was placed below the insole in the heel region for each shoe. Eight total impacts with potential energy ranged from 1.82 to 6.08 J were performed onto the heel region of the shoe. The order of testing conditions was first without insole, then with insole, and finally interposing the shock absorption foam for each shoe. Peak deceleration of the striker was measured with an accelerometer attached to the striker during impact. The results of this study seemed to show that the insole or additional shock absorption foam could perform its shock absorption effect well for the shoes with limited midsole cushioning. Further, our findings showed that insoles absorbed more, even up to 24–32% of impact energy under low impact energy. It seemed to indicate that insoles play a more important role in cushioning properties of sport shoes under a low impact energy condition.

Restricted access

Craig A. Horswill

As a result of exercise-induced sweating, athletes and trained individuals can lose up to 3 L of fluid per hour. Fluid replacement is required to maintain hydration and allow the athlete to continue to perform. Inadequate fluid intake will adversely affect temperature regulation, cardiovascular function, and muscle metabolism. To maximize fluid intake and effectively replace fluid, athletes must employ behavioral strategies. Athletes can also select beverages with characteristics that complement their behavioral efforts. Palatability, rapid absorption, retention of the fluid, and ergogenicity are the major attributes to consider for enhancing hydration during training and physical activity.

Restricted access

Anthony S. Kulas, Randy J. Schmitz, Sandra J. Shultz, Mary Allen Watson and David H. Perrin

Although leg spring stiffness represents active muscular recruitment of the lower extremity during dynamic tasks such as hopping and running, the joint-specific characteristics comprising the damping portion of this measure, leg impedance, are uncertain. The purpose of this investigation was to assess the relationship between leg impedance and energy absorption at the ankle, knee, and hip during early (impact) and late (stabilization) phases of landing. Twenty highly trained female dancers (age = 20.3 ± 1.4 years, height = 163.7 ± 6.0 cm, mass = 62.1 ± 8.1 kg) were instrumented for biomechanical analysis. Subjects performed three sets of double-leg landings from under preferred, stiff, and soft landing conditions. A stepwise linear regression analysis revealed that ankle and knee energy absorption at impact, and knee and hip energy absorption during the stabilization phases of landing explained 75.5% of the variance in leg impedance. The primary predictor of leg impedance was knee energy absorption during the stabilization phase, independently accounting for 55% of the variance. Future validation studies applying this regression model to other groups of individuals are warranted.

Restricted access

Elisa S. Arch and Bretta L. Fylstra

The large, late-stance energy generated by the ankle is believed to be critical during gait. However, the distal foot absorbs/dissipates a considerable amount of energy during the same phase. Thus, the energy generated by the combined ankle–foot system is more modest, which raises questions regarding the necessity of such a large ankle power and the interplay between foot and ankle energetics. This study aimed to evaluate our conservation of energy hypothesis, which predicted if distal foot energy absorption/dissipation was reduced, then less energy would be generated at the ankle and thus the same combined ankle–foot energetics would be achieved. Motion analysis data were collected as healthy subjects walked under 2 conditions (Shoes, Footplate). In the Footplate condition, the shoe was replaced with a customized, rigid footplate with a rocker profile. In support of the hypothesis, there was significantly less positive ankle and less negative distal foot work with footplate use, resulting in very similar combined ankle–foot work between conditions. These findings suggest that there is an interplay between the energy generated by the ankle and absorbed by the foot. This interplay should be considered when designing orthotic and prosthetic ankle–foot systems and rehabilitation programs for individuals with weakened ankle muscles.