Search Results

You are looking at 1 - 10 of 171 items for :

  • "aerobic power" x
Clear All
Restricted access

Maria Konstantaki, Edward Winter and Ian Swaine

Context:

Forward propulsion in freestyle swimming is predominantly achieved through arm action. Few studies have assessed the effects of arm training on arm power and swimming performance, yet there have not been any investigations on the effects of arms-only swimming training on swimming performance and physiological responses to arm exercise.

Purpose:

To investigate the changes in arms-only and full-stroke swimming performance, movement economy and aerobic power after an arms-only swimming training program.

Methods:

Fifteen male county level swimmers were assigned either to an experimental (ES, n = 8) or control group (CS, n = 7). For six weeks ES performed arms-only freestyle swimming exercises for 20% of their weekly training distance three times per week, whereas CS performed their usual swimming training. Before and after the training program, both groups performed a) two time trials, 186 m using arms-only (186ARMS) and 372 m using full-stroke (372FULL) freestyle swimming, and b) an incremental arm-pulling exercise test. The time to complete the trials was recorded. Peak oxygen uptake (VO2peak), peak exercise intensity (EIpeak) submaximal oxygen uptake at 60 W (VO2−60) and exercise intensity at ventilatory threshold (VTW) were determined from the exercise test.

Results:

After training, ES had improved in 186ARMS (−14.2 ± 3.6%, P = .03), VO2−60 (−22.5 ± 2.3%, P = .04), EIpeak (+17.8 ± 4.2%, P = .03), and VTW (+18.9 ± 2.3%, P = .02), but not in VO2peak (P = .09) or in 372FULL (P = .07). None of the measures changed in CS (P > .05).

Conclusion:

Arms-only swimming training at 20% of the weekly training distance is an effective method to improve arm conditioning during the preparatory phase of the annual training cycle.

Restricted access

Bareket Falk and Raffy Dotan

Measurement of Aerobic Power—Why is it Important? Maximal aerobic power ( V ˙ O 2 max ) is one of the 2 main constituents of aerobic capacity—the other one being aerobic endurance (percentage of V ˙ O 2 max that can be maintained for given distances or durations). Aerobic endurance is difficult

Restricted access

Carlo Capelli

The decays of maximal aerobic power (MAP) and of anaerobic capacity were recently estimated in cycling master athletes from 35 to 80 years of age by analyzing their absolute best performances in track competitions. 1 It was suggested that MAP would start declining after 45 years of age, with an

Restricted access

Seihati A. Shiroma, Ursula F. Julio and Emerson Franchini

supplementary aerobic training program, judo athletes presented faster V ˙ O 2 recovery after a maximal graded exercise test (GET) and faster heart rate (HR) recovery after a high-intensity judo-specific test. 8 Thus, aerobic power development has been associated with faster creatine phosphate resynthesis

Restricted access

Ben Schram, Wayne Hing and Mike Climstein

Purpose:

Stand-up paddle boarding (SUP) is a rapidly growing sport and recreational activity for which only anecdotal evidence exists on its proposed health, fitness, and injury-rehabilitation benefits. Participants: 10 internationally and nationally ranked elite SUP athletes.

Methods:

Participants were assessed for their maximal aerobic power on an ergometer in a laboratory and compared with other water-based athletes. Field-based assessments were subsequently performed using a portable gas-analysis system, and a correlation between the 2 measures was performed.

Results:

Maximal aerobic power (relative) was significantly higher (P = .037) when measured in the field with a portable gas-analysis system (45.48 ± 6.96 mL · kg−1 · min−1) than with laboratory-based metabolic-cart measurements (43.20 ± 6.67 mL · kg−1 · min−1). There was a strong, positive correlation (r = .907) between laboratory and field maximal aerobic power results. Significantly higher (P = .000) measures of SUP paddling speed were found in the field than with the laboratory ergometer (+42.39%). There were no significant differences in maximal heart rate between the laboratory and field settings (P = .576).

Conclusion:

The results demonstrate the maximal aerobic power representative of internationally and nationally ranked SUP athletes and show that SUP athletes can be assessed for maximal aerobic power in the laboratory with high correlation to field-based measures. The field-based portable gas-analysis unit has a tendency to consistently measure higher oxygen consumption. Elite SUP athletes display aerobic power outputs similar to those of other upper-limb-dominant elite water-based athletes (surfing, dragon-boat racing, and canoeing).

Restricted access

Iñigo Mujika, Juanma Santisteban, Paco Angulo and Sabino Padilla

A 7-week, 10-session individual training program was implemented with a youth elite football (soccer) player who had been underperforming because of poor aerobic fitness. The intervention focused on developing aerobic power and high lactate production and contributed to a 32.3% improvement in a football-specific performance test. The player was able to return to play and exceed expected performance levels during competitive match play.

Restricted access

Anthony Bouillod, Julien Pinot, Flavien Soenen, Theo Ouvrard and Frederic Grappe

Purpose:

To analyze the effect of the pedaling activity in different 4-min time trials (TT4s) (laboratory and field conditions) and compare TT4 and maximal aerobic power (MAP) determined from the classical incremental exercise test in laboratory. It was hypothesized that the exercises performed on the field would determine higher physical (power output [PO]) and mental involvements due to different environmental conditions.

Methods:

Sixteen male cyclists underwent an incremental test to exhaustion and 3 TT4s under different conditions: cycle ergometer (CE), level ground (LG), and uphill (UP).

Results:

Correlation was observed for PO with a trivial effect size and narrow limits of agreement between MAP and CE TT4 (r = .96, P < .001). The comparison between the CE, LG, and UP tests indicates that PO was significantly higher in UP than in CE (+8.0%, P < .001) and LG (+11.0%, P < .001).

Conclusions:

The results suggest that PO depends on the nature of the pedaling activity. Moreover, PO under CE TT4 is a relevant predictor of MAP. It seems important to measure MAP by taking into account the cycling conditions, considering that coaches and scientists use this parameter to assess the aerobic potential of athletes and determine the exercise intensities useful for monitoring adaptation to training.

Restricted access

Espen Tønnessen, Erlend Hem, Svein Leirstein, Thomas Haugen and Stephen Seiler

Purpose:

The purpose of this investigation was to quantify maximal aerobic power (VO2max) in soccer as a function of performance level, position, age, and time of season. In addition, the authors examined the evolution of VO2max among professional players over a 23-y period.

Methods:

1545 male soccer players (22 ± 4 y, 76 ± 8 kg, 181 ± 6 cm) were tested for VO2max at the Norwegian Olympic Training Center between 1989 and 2012.

Results:

No differences in VO2max were observed among national-team players, 1st- and 2nd-division players, and juniors. Midfielders had higher VO2max than defenders, forwards, and goalkeepers (P < .05). Players <18 y of age had ~3% higher VO2max than 23- to 26-y-old players (P = .016). The players had 1.6% and 2.1% lower VO2max during off-season than preseason (P = .046) and in season (P = .021), respectively. Relative to body mass, VO2max among the professional players in this study has not improved over time. Professional players tested during 2006–2012 actually had 3.2% lower VO2max than those tested from 2000 to 2006 (P = .001).

Conclusions:

This study provides effect-magnitude estimates for the influence of performance level, player position, age, and season time on VO2max in men’s elite soccer. The findings from a robust data set indicate that VO2max values ~62–64 mL · kg−1 · min−1 fulfill the demands for aerobic capacity in men’s professional soccer and that VO2max is not a clearly distinguishing variable separating players of different standards.

Restricted access

Daniela A. Rubin, Robert G. McMurray and Joanne S. Harrell

Differences in insulin concentrations between normal weight or overweight adolescents (n = 437) were determined depending on their habitual physical activity (PA) and aerobic power (pVO2max). Tertiles were computed for PA (survey) and pVO2max (submaximal predicted cycle test). Independent of their weight, adolescents in the upper 2 tertiles for vigorous PA had lower insulin concentrations than those in the bottom tertile (p < .05). Adolescents in the top tertile for pVO2max expressed per kg fat-free mass also had lower insulin concentrations than those in the medium and bottom tertiles (p = .002). In youth, vigorous physical activity and aerobic power are associated with fasting insulin independent of weight status.

Restricted access

Shigehiro Yoshizawa, Hiroko Honda, Naka Nakamura, Kiyohide Itoh and Nobuo Watanabe

In the present study, 8 young girls participated as the experimental group and another 8 as the control group in a study of the effect of training on maximal aerobic power. The experimental group practiced a 915-m endurance run 6 days per week. Both groups underwent treadmill tests to check the training effect every 6 months. After 18 months, the experimental group was significantly superior to the control group in maximal aerobic power. The training program brought about this effect in only 12 months. The increased maximal oxygen uptake was mainly due to the increase of stroke volume rather than to the improvement of maximal arteriovenous oxygen content difference. There were seasonal cycles in the change of the endurance run performance: longer times in spring to summer and fall to winter and shortened times in summer to fall and winter to spring.