Search Results

You are looking at 1 - 4 of 4 items for :

  • "aminoacidemia" x
Clear All
Restricted access

Louise M. Burke, Julie A Winter, David Cameron-Smith, Marc Enslen, Michelle Farnfield and Jacques Decombaz

The authors undertook 2 crossover-designed studies to characterize plasma amino acid (AA) responses to the intake of 20 g of protein. In Study 1, 15 untrained and overnight-fasted subjects consumed 20 g protein from skim milk, soy milk, beefsteak, boiled egg, and a liquid meal supplement. In Study 2, 10 fasted endurance-trained subjects consumed 20 g protein from a protein-rich sports bar at rest and after a 60-min submaximal ride. Plasma AA concentrations were measured immediately before and for 180 min after food ingestion using a gas-chromatography flame-ionization detection technique. A pharmacokinetic analysis was undertaken for profiles of total AAs (TAA), essential AAs, branched-chain AAs (BCAA), and leucine. Although area-under-the-curve values for plasma TAA were similar across protein sources, the pattern of aminoacidemia showed robust differences between foods, with liquid forms of protein achieving peak concentrations twice as quickly after ingestion as solid protein-rich foods (e.g., ~50 min vs ~100 min) and skim milk achieving a significantly faster peak leucine concentration than all other foods (~25 min). Completing exercise before ingesting protein sources did not cause statistically significant changes in the pattern of delivery of key AAs, BCAAs, and leucine apart from a 20–40% increase in the rate of elimination. These results may be useful to plan the type and timing of intake of protein-rich foods to maximize the protein synthetic response to various stimuli such as exercise.

Restricted access

Marina Fabre, Christophe Hausswirth, Eve Tiollier, Odeline Molle, Julien Louis, Alexandre Durguerian, Nathalie Neveux and Xavier Bigard

While effects of the two classes of proteins found in milk (i.e., soluble proteins, including whey, and casein) on muscle protein synthesis have been well investigated after a single bout of resistance exercise (RE), the combined effects of these two proteins on the muscle responses to resistance training (RT) have not yet been investigated. Therefore, the aim of this study was to examine the effects of protein supplementation varying by the ratio between milk soluble proteins (fast-digested protein) and casein (slow-digested protein) on the muscle to a 9-week RT program. In a double-blind protocol, 31 resistance-trained men, were assigned to 3 groups receiving a drink containing 20g of protein comprising either 100% of fast protein (FP(100), n = 10), 50% of fast and 50% of slow proteins (FP(50), n = 11) or 20% of fast protein and 80% of casein (FP(20), n = 10) at the end of training bouts. Body composition (DXA), and maximal strength in dynamic and isometric were analyzed before and after RT. Moreover, blood plasma aminoacidemia kinetic after RE was measured. The results showed a higher leucine bioavailability after ingestion of FP(100) and FP(50) drinks, when compared with FP(20) (p< .05). However, the RT-induced changes in lean body mass (p < .01), dynamic (p < .01), and isometric muscle strength (p < .05) increased similarly in all experimental groups. To conclude, compared with the FP(20) group, the higher rise in plasma amino acids following the ingestion of FP(100) and FP(50) did not lead to higher muscle long-term adaptations.

Restricted access

Samuel G. Impey, Kelly M. Hammond, Robert Naughton, Carl Langan-Evans, Sam O. Shepherd, Adam P. Sharples, Jessica Cegielski, Kenneth Smith, Stewart Jeromson, David L. Hamilton, Graeme L. Close and James P. Morton

 al., 2009 ; Wilkinson et al., 2007 ). Contemporary guidelines recommend whey protein beverages due to their higher leucine content and rapid aminoacidemia upon ingestion ( Thomas et al., 2016 ), though hydrolyzed collagen beverages and gels are now commercially available and marketed to athletic

Open access

Oliver C. Witard, Ina Garthe and Stuart M. Phillips

/kg BM when we consider real foods, not isolated proteins, and the coingestion of other macronutrients that would alter rates of digestion and thus patterns of aminoacidemia to stimulate MPS. Hence, for an 80-kg male sprinter, male long jumper, or female javelin thrower, this guideline represents an ∼30