changes experienced in the later part of the second trimester, but plateauing, and even in some cases trending toward improvement before birth. 6 The goals of this current research were to determine how body anthropometry changes during pregnancy and to determine the relationship between anthropometric
Search Results
Robert D. Catena, Nigel Campbell, Alexa L. Werner, and Kendall M. Iverson
Adam J. Zemski, Elizabeth M. Broad, and Gary J. Slater
body composition are surface anthropometry and dual-energy X-ray absorptiometry (DXA) ( Ackland et al., 2012 ; Zemski et al., 2015 ). Surface anthropometry, which includes the indirect assessment of subcutaneous fat, is an easily accessible, inexpensive, mobile, and robust method of assessment. The
Zachary Merrill, Grace Bova, April Chambers, and Rakié Cham
specific segmentation method used, and these differences are challenging to control for as they depend on obesity, gender, and perhaps other body shapes. Although previous work has shown differences in anthropometry due to gender and obesity, 16 as well as differences between parameter calculation methods
Adam J. Zemski, Shelley E. Keating, Elizabeth M. Broad, and Gary J. Slater
not previously been explored. Anthropometry is the scientific procedure of acquiring surface anatomical dimensional measurements, including skinfolds, and is an easily accessible, inexpensive, mobile, and robust method of body composition assessment used in rugby union ( Ackland et al., 2012 ; Duthie
Jessa M. Buchman-Pearle and Stacey M. Acker
gravity. Finally, participant specificity emerges as soft tissue artifact is not consistent between individuals due to factors such as anthropometry, joint mobility, or muscle recruitment patterns. Moreover, these location, task, and participant-specific factors interact, further complicating the ability
Márcio Beck Schemes, Simone de Azevedo Bach, Carlos Leonardo Figueiredo Machado, Rodrigo Rabuski Neske, Cláudia Dornelles Schneider, and Ronei Silveira Pinto
anthropometry (AN; Heymsfield et al., 2015 ) are often used in older adults. DXA and US methods are expensive, reducing its access, and images analyses are time-consuming as well. However, AN is a low-cost method and requires less time to perform. The DXA, US, and AN have distinct measurement principles
Ava Farley, Gary J. Slater, and Karen Hind
spectroscopy (BIS), and surface anthropometry (SA) ( Meyer et al., 2013 ). Despite differences in technology, resources, and technical expertise required, they are all susceptible to technical error and biological variation ( Ackland et al., 2012 ; Meyer et al., 2013 ), which significantly affects precision
Andrew A. Dingley, David B. Pyne, and Brendan Burkett
Purpose:
To characterize relationships between propulsion, anthropometry, and performance in Paralympic swimming.
Methods:
A cross-sectional study of swimmers (13 male, 15 female) age 20.5 ± 4.4 y was conducted. Subject locomotor categorizations were no physical disability (n = 8, classes S13–S14) and low-severity (n = 11, classes S9–S10) or midseverity disability (n = 9, classes S6–S8). Full anthropometric profiles estimated muscle mass and body fat, a bilateral swim-bench ergometer quantified upper-body power production, and 100-m time trials quantified swimming performance.
Results:
Correlations between ergometer mean power and swimming performance increased with degree of physical disability (low-severity male r = .65, ±0.56, and female r = .68, ±0.64; midseverity, r = .87, ±0.41, and r = .79, ±0.75). The female midseverity group showed nearperfect (positive) relationships for taller swimmers’ (with a greater muscle mass and longer arm span) swimming faster, while for female no- and low-severity-disability groups, greater muscle mass was associated with slower velocity (r = .78, ±0.43, and r = .65, ±0.66). This was supported with lighter females (with less frontal surface area) in the low-severity group being faster (r = .94, ±0.24). In a gender contrast, low-severity males with less muscle mass (r = -.64, ±0.56), high skinfolds (r = .78, ±0.43), a longer arm span (r = .58, ±0.60) or smaller frontal surface area (r = -.93, ±0.19) were detrimental to swimming-velocity production.
Conclusion:
Low-severity male and midseverity female Paralympic swimmers should be encouraged to develop muscle mass and upper-body power to enhance swimming performance. The generalized anthropometric measures appear to be a secondary consideration for coaches.
Herman van Werkhoven and Stephen J. Piazza
results of previous research. Similar methods have been employed by others. 13 , 21 It is important to note that our correlational findings of relationships between foot anthropometry and oxygen consumption does not necessarily imply the existence of mechanisms linking the two. More detailed studies
Trent W. Lawton, John B. Cronin, and Michael R. McGuigan
Purpose:
There is no common theory on criteria to appropriately select crew rowers in pursuit of small performance gains. The purpose of this study was to establish whether anthropometry, rowing ergometry, or lower body strength were suitable criteria to identify differences between selected and nonselected sculling crews.
Method:
Twelve elite women performed a 2000-m ergometer time trial and a 5-repetition leg-press dynamometer test, were anthropometrically profiled, and participated in on-water national crew seat-racing trials. Log-transformed data were analyzed to compare percent (± SD) and standardized differences in group means (ES; ±90% confidence interval [CI]) between selected and nonselected oarswomen, with adjustments for body mass where appropriate.
Results:
Selected crew boats were 4.60% ± 0.02% faster and won by an average margin of 13.5 ± 0.7 s over 1500 m. There were no differences between crews on average in height, arm span, seated height, body mass, or 8-site skinfold sum (body fat). Difference in 2000-m ergometer times were also trivial (ES = 0.2, 90%CI = −0.6 to 1.1, P = .63); however, selected crews had moderately greater leg-press strength (ES = 1.1, 90%CI = 0.3−1.9, P = .03).
Conclusion:
Selected oarswomen with comparable anthropometry and 2000-m ergometer ability had greater lower body strength. Coaches of elite oarswomen might consider leg strength as part of crew-selection criteria, given acceptable on-water boatmanship and attainment of 2000-m ergometer benchmarks.