Search Results

You are looking at 1 - 3 of 3 items for :

  • "aquatic rehabilitation" x
Clear All
Restricted access

Jill A. Manners and James R. Scifers

Column-editor : Jeff G. Konin

Restricted access

Aimee E. Roth, Michael G. Miller, Marc Ricard, Donna Ritenour and Brenda L. Chapman

Context:

It has been theorized that aquatic balance training differs from land balance training.

Objective:

To compare the effects of balance training in aquatic and land environments.

Design:

Between-groups, repeated-measures design.

Setting:

Biomechanics laboratory and pool.

Participants:

24 healthy subjects randomly assigned to aquatic (n = 8), land (n = 10), or control (n = 6) groups.

Intervention:

Four weeks of balance training.

Main Outcome Measures:

Balance was measured (pre, mid, post, follow-up). COP variables: radial area, y range, x range in single leg (SL), tandem (T), single leg foam (SLF), and tandem form (TF) stance.

Results:

A significant condition × time interaction for x range was found, with improvements for SL, SLF, and TF. Radial area improved, with post-test 1.01 ± .23 cm2 and follow-up 1.06 ± .18 cm2 significantly lower than pretest 1.18 ± .23 cm2. Y range significantly improved, with posttest (4.69 ± 1.02 cm2) lower than pretest (5.89 ± 1.26 cm2). The foam conditions (SLF & TF) were significantly different from non-foam conditions (SL & T) for all variables.

Conclusions:

Results of this study show that balance training can effectively be performed in both land and aquatic environments.

Restricted access

Eadric Bressel, Gerald Smith, Andrew Miller and Dennis Dolny

Context: Quantification of the magnitudes of fluid resistance provided by water jets (currents) and their effect on energy expenditure during aquatic-treadmill walking is lacking in the scientific literature. Objective: To quantify the effect of water-jet intensity on jet velocity, drag force, and oxygen uptake (VO2) during aquatic-treadmill walking. Design: Descriptive and repeated measures. Setting: Athletic training facility. Participants, Interventions, and Measures: Water-jet velocities were measured using an electromagnetic flow meter at 9 different jet intensities (0-80% maximum). Drag forces on 3 healthy subjects with a range of frontal areas (600, 880, and 1250 cm2) were measured at each jet intensity with a force transducer and line attached to the subject, who was suspended in water. Five healthy participants (age 37.2 ± 11.3 y, weight 611 ± 96 N) subsequently walked (~1.03 m/s or 2.3 miles/h) on an aquatic treadmill at the 9 different jet intensities while expired gases were collected to estimate VO2. Results: For the range of jet intensities, water-jet velocities and drag forces were 0-1.2 m/s and 0-47 N, respectively. VO2 increased nonlinearly, with values ranging from 11.4 ± 1.0 to 22.2 ± 3.8 mL × kg-1 × min-1 for 0-80% of jet maximum, respectively. Conclusions: This study presented methodology for quantifying water-jet flow velocities and drag forces in an aquatic-treadmill environment and examined how different jet intensities influenced VO2 during walking. Quantification of these variables provides a fundamental understanding of aquatic-jet use and its effect on VO2. In practice, these results indicate that VO2 may be substantially increased on an aquatic treadmill while maintaining a relatively slow walking speed.