Search Results

You are looking at 1 - 10 of 13 items for :

  • "arm ergometry" x
  • All content x
Clear All
Restricted access

Hazzaa M. Al-Hazzaa, Saeed A. Al-Refaee, Muhammed A. Sulaiman, Ma’ed Y. Dafterdar, Abdullah S. Al-Herbish, and Andrew C. Chukwuemeka

The purpose of this study was to examine the maximal cardiorespiratory responses of trained adolescent male swimmers (SWM, N = 18), soccer players (SOC, N = 18), and moderately active reference subjects (CON, N = 16) to treadmill running (TRD) and arm ergometry (ARM). Mean values (±SD)for skeletal age were similar among the three groups (12.5± 1.9, 12.7 ± 1.1, and 12.5 ± 1.6 years, for the SWM, SOC, and CON, respectively). Allometric scaling procedures, relating VO2max and body mass, were used and mass exponents of .80 and .74 were identified for TRD and ARM data, respectively. During TRD testing SOC attained significantly higher VO2max values when expressed in ml · kg−1 · min−1, or ml · kg−0.80 · min−1 than the other two groups. However, during ARM testing, the SWM achieved significantly higher VO2peak values (ml · kg−0.74 · min−1 and scaled to arm-CSA) than SOC. The ratio of ARM-VAT to TRD-VAT was significantly higher in SWM (50.1± 9%) compared to SOC (41.2±5%), or CON (41.9 ± 6%).

Restricted access

George T. Hardison Jr., Richard G. Israel, and Grant W. Somes

The purpose of this study was to identify the most desirable cranking rate to be used by paraplegic individuals during submaximal arm training programs. Eleven healthy paraplegic males (M age = 28.8 years) with lesion levels ranging from T4 to T12 served as subjects. Arm exercise loads for the four submaximal cranking rates studied (50, 60, 70, and 80 rpm) were set to elicit 60% of peak V̇O2. Duration of the submaximal tests was 15 min. V̇E, V̇O2, RER, HR, and differentiated RPE were recorded each minute throughout the 15-min test. A randomized block ANOVA and Duncan’s post hoc analysis indicated that 80 rpm produced significantly higher (p <.05) values for HR, absolute V̇O2, V̇E, V̇CO2, and V̇E/V̇O2 than any other rates. Cranking at 70 rpm resulted in significantly higher (p <.05) values for O2 pulse, while relative V̇O2 was significantly higher (p <05) at 70 rpm than at all other rates except 80 rpm. RPE was significantly higher (p <.05) at 50 rpm than at 60 or 70 rpm, with no difference between 50 and 80 or 60, 70, and 80. The authors concluded that 70 rpm was the most appropriate cranking rate for paraplegic males to use during arm training programs.

Restricted access

Jonpaul Nevin and Paul M. Smith

Purpose: The aim of this study was to investigate the relationship between selected anthropometric, physiological, and upper-body strength measures and 15-km handcycling time-trial (TT) performance. Methods: Thirteen trained H3/H4 male handcyclists performed a 15-km TT, graded exercise test, 15-second all-out sprint, and 1-repetition-maximum assessment of bench press and prone bench pull strength. Relationship between all variables was assessed using a Pearson correlation coefficient matrix with mean TT velocity representing the principal performance outcome. Results: Power at a fixed blood lactate concentration of 4 mmol·L−1 (r = .927; P < .01) showed an extremely large correlation with TT performance, whereas relative V˙O2peak (peak oxygen uptake) (r = .879; P < .01), power-to-mass ratio (r = .879; P < .01), peak aerobic power (r = .851; P < .01), gross mechanical efficiency (r = 733; P < .01), relative prone bench pull strength (r = .770; P = .03) relative bench press strength (r = .703; P = .11), and maximum anaerobic power (r = .678; P = .15) all demonstrated a very large correlation with performance outcomes. Conclusion: Findings of this study indicate that power at a fixed blood lactate concentration of 4 mmol·L−1, relative V˙O2peak, power-to-mass ratio, peak aerobic power, gross mechanical efficiency, relative upper-body strength, and maximum anaerobic power are all significant determinants of 15-km TT performance in H3/H4 handcyclists.

Restricted access

Michail Lubomirov Michailov, Audry Morrison, Mano Mitkov Ketenliev, and Boyanka Petkova Pentcheva

Traditional treadmill or bicycle ergometry neglects the upper-body musculature that predominantly limits or terminates rock-climbing performance (ie, the inability to continually pull up one’s body mass or “hang on”).


To develop an incremental maximal upper-body ergometer test (UBT) to evaluate climbers’ aerobic fitness and sport-specific work capacity and to compare these results with a traditional treadmill protocol.


Eleven elite sport climbers (best redpoint grade Fr.8b) performed a UBT on a vertically mounted rowing ergometer and, on a separate occasion, performed a maximal incremental treadmill test (TMT). Cardiorespiratory parameters were measured continuously. Lactate (La) samples were collected.


Peak oxygen consumption (VO2peak) and heart rate in UBT and TMT were 34.1 ± 4.1 vs 58.3 ± 2.6 mL · min−1 · kg−1 and 185 ± 8 vs 197 ± 8 beats/min, respectively, and both variables were of significantly lower magnitude during UBT (P < .001). End-of-test La levels for UBT (11.9 ± 1.7 mmol/L) and TMT (12.3 ± 2.5 mmol/L) were similar (P = .554). Treadmill VO2peak was not correlated with either upper-body (UB) VO2peak (P = .854) or redpoint and on-sight climbing grade ability (P > .05). UB VO2peak and peak power output per kg body mass were both strongly correlated (P < .05) with climbing grade ability. The highest correlation coefficient was calculated between current on-sight grade and UB VO2peak (r = .85, P = .001).


UBT aerobic- and work-capacity results were strongly correlated to climbing-performance variables and reflected sport-specific fatigue, and TMT results were not. UBT is preferred to TMT to test and monitor dedicated and elite rock climbers’ training status.

Restricted access

Dianne S. Ward, Oded Bar-Or, Patti Longmuir, and Karen Smith

Seventeen individuals (ages 11–30 years), all wheelchair users, were classified as active or sedentary. Peak mechanical power, heart rate (HR), and rating of perceived exertion (RPE) were determined during continuous, incremental all-out arm ergometry. Subjects were asked to wheel on an oval track at prescribed speeds, and one month later they repeated this task. All subjects could distinguish among prescriptions, as judged from HR and wheeling velocities. However, the active subjects chose higher speeds (by 0.8–1.3 m/s), a wider range of speeds, and could better distinguish among sequential RPE levels than did the sedentary subjects. All subjects chose wheeling velocities higher than expected from their originally established HR-on-RPE regression. One-month retention was high and similar between groups. Individuals who use wheelchairs can discriminate among wheeling intensities as prescribed using the RPE scale and have excellent retention for at least one month.

Restricted access

Craig A. Horswill, Dave G. Curby, William P. Bartoli, John R. Stofan, and Robert Murray

We examined whether the type of fluid ingested during wrestling training would affect arm ergometry in adolescent athletes. Wrestlers (n = 11) trained for 2-hr sessions and consumed fluid containing 6% carbohydrate or a placebo of equal volume administered double blind and in randomized fashion. To account for training demands across beverage comparisons, energy expenditure (EE) was estimated by using the rate of appearance of CO2 (RaCO2) after 13C-bicarbonate ingestion. The performance test was completed after training and consisted of 6 min of intermittent, high-intensity arm cranking. The results showed the difference in total arm work (kg • m−2 • min) between carbohydrate (2,130 ± 263) and placebo (1,961 ± 401) conditions approached statistical significance (p = .07). Fluid intake matched 50% of sweat loss, resulting in modest dehydration for both treatments. Carbohydrate ingestion during training may enhance high-intensity intermittent arm work in adolescent wrestlers; however, the additive effects of carbohydrate dose and fluid volume for hydration need to be teased apart in subsequent research on adolescents performing such exercise.

Restricted access

* Ian Gordon Campbell * Alan Mark Batterham * 8 1998 10 3 248 263 10.1123/pes.10.3.248 Cardiorespiratory Responses of Trained Boys to Treadmill and Arm Ergometry: Effect of Training Specificity Hazzaa M. Al-Hazzaa * Saeed A. Al-Refaee * Muhammed A. Sulaiman * Ma’ed Y. Dafterdar * Abdullah S

Restricted access

Arm Ergometry in Paraplegic Males George T. Hardison Jr. * Richard G. Israel Grant W. Somes 4 1987 4 2 94 105 10.1123/apaq.4.2.94 A Critique of Cardiovascular Fitness Testing with Mentally Retarded Persons Christine Seidl * Greg Reid * David L. Montgomery * 4 1987 4 2 106 116 10

Open access

Flávia Cavalcante Monteiro Melo, Kátia Kamila Félix de Lima, Ana Paula Knackfuss Freitas Silveira, Kesley Pablo Morais de Azevedo, Isis Kelly dos Santos, Humberto Jefferson de Medeiros, José Carlos Leitão, and Maria Irany Knackfuss

.1097/00005768-200105000-00005 11323537 10. Hicks AL , Martin KA , Ditor DS , et al . Long-term exercise training in persons with spinal cord injury: effects on strength, arm ergometry performance and psychological well-being . Spinal Cord . 2003 ; 41 : 34 – 43 . PubMed ID: 12494319 doi:10.1038/ 12494319 10

Restricted access

Bareket Falk and Raffy Dotan

cases in which V ˙ O 2 max has clearly not been attained or verified, or where it is highly likely that this is the case. It accounts, among other, for such cases as exercise employing too small a muscle mass (eg, cycling, or arm ergometry, vs treadmill running), or when V ˙ O 2 fails to demonstrate