Search Results

You are looking at 1 - 10 of 60 items for :

  • "athlete monitoring" x
Clear All
Restricted access

Samuel Ryan, Emidio Pacecca, Jye Tebble, Joel Hocking, Thomas Kempton and Aaron J. Coutts

Athlete monitoring systems are commonly used in professional team sports to provide coaches and scientists with an understanding of player performance readiness and injury risk. 1 – 3 Information from these systems is used to plan training load to maximize adaptations while maintaining player

Restricted access

Heidi R. Thornton, Jace A. Delaney, Grant M. Duthie and Ben J. Dascombe

Athlete-monitoring data provide useful information as to whether athletes are responding appropriately to impose training and competition demands. 1 , 2 Evaluating training-monitoring data is crucial to ensure that athletes are exposed to sufficient training to prepare them for the requirements of

Restricted access

Dan Weaving, Clive Beggs, Nicholas Dalton-Barron, Ben Jones and Grant Abt

by practitioners to guide decision making relating to when amendments (eg, progression or regression) to training prescription should be made, depending on how “dose” and “response” change over time. Figure 1 —Example athlete-monitoring heuristic decision matrix. To analyze the change in the training

Restricted access

Fergus O’Connor, Heidi R. Thornton, Dean Ritchie, Jay Anderson, Lindsay Bull, Alex Rigby, Zane Leonard, Steven Stern and Jonathan D. Bartlett

, which preceded an injury incidence, were calculated. These time courses are consistent with that of other research 12 and are common within athlete monitoring systems. While previous studies have assessed the relationship between numerous workload scenarios and injury, 18 this study focused on the

Open access

Stephen Crowcroft, Erin McCleave, Katie Slattery and Aaron J. Coutts

Purpose:

To assess measurement sensitivity and diagnostic characteristics of athlete-monitoring tools to identify performance change.

Methods:

Fourteen nationally competitive swimmers (11 male, 3 female; age 21.2 ± 3.2 y) recorded daily monitoring over 15 mo. The self-report group (n = 7) reported general health, energy levels, motivation, stress, recovery, soreness, and wellness. The combined group (n = 7) recorded sleep quality, perceived fatigue, total quality recovery (TQR), and heart-rate variability. The week-to-week change in mean weekly values was presented as coefficient of variance (CV%). Reliability was assessed on 3 occasions and expressed as the typical error CV%. Week-to-week change was divided by the reliability of each measure to calculate the signal-to-noise ratio. The diagnostic characteristics for both groups were assessed with receiver-operating-curve analysis, where area under the curve (AUC), Youden index, sensitivity, and specificity of measures were reported. A minimum AUC of .70 and lower confidence interval (CI) >.50 classified a “good” diagnostic tool to assess performance change.

Results:

Week-to-week variability was greater than reliability for soreness (3.1), general health (3.0), wellness% (2.0), motivation (1.6), sleep (2.6), TQR (1.8), fatigue (1.4), R-R interval (2.5), and LnRMSSD:RR (1.3). Only general health was a “good” diagnostic tool to assess decreased performance (AUC –.70, 95% CI, .61–.80).

Conclusion:

Many monitoring variables are sensitive to changes in fitness and fatigue. However, no single monitoring variable could discriminate performance change. As such the use of a multidimensional system that may be able to better account for variations in fitness and fatigue should be considered.

Restricted access

Ed Maunder, Andrew E. Kilding, Christopher J. Stevens and Daniel J. Plews

Electro Inc, Kempele, Finland; Forerunner ® 920XT, Edge ® 520 Plus; Garmin, Schaffhausen, Switzerland). Athlete Monitoring Well-being was assessed via 5-point Likert scales of fatigue, sleep quality, muscle soreness, stress, and mood. These scores were summed to measure global well-being. 14 Scales

Restricted access

Sam Coad, Bon Gray and Christopher McLellan

Purpose:

To assess match-to-match variations in salivary immunoglobulin A concentration ([s-IgA]) measured at 36 h postmatch throughout an Australian Football League (AFL) premiership season and to assess the trends between 36-h-postmatch [s-IgA] and match-play exercise workloads throughout the same season.

Methods:

Eighteen elite male AFL athletes (24 ± 4.2 y, 187.0 ± 7.1 cm, 87.0 ± 7.6 kg) were monitored on a weekly basis to determine total match-play exercise workloads and 36-h-postmatch [s-IgA] throughout 16 consecutive matches in an AFL premiership season. Global positioning systems (GPS) with integrated triaxial accelerometers were used to measure exercise workloads (PlayerLoad) during each AFL match. A linear mixed-model analyses was conducted for time-dependent changes in [s-IgA] and player load.

Results:

A significant main effect was found for longitudinal postmatch [s-IgA] data (F 16,240 = 3.78, P < .01) and PlayerLoad data (F 16,66 = 1.98, P = .03). For all matches after and including match 7, a substantial suppression trend in [s-IgA] 36-h-postmatch values was found compared with preseason baseline [s-IgA].

Conclusion:

The current study provides novel data regarding longitudinal trends in 36-h-postmatch [s-IgA] for AFL athletes. Results demonstrate that weekly in-season AFL match-play exercise workloads may result in delayed mucosal immunological recovery beyond 36 h postmatch. The inclusion of individual athlete-monitoring strategies of [s-IgA] may be advantageous in the detection of compromised postmatch mucosal immunological function for AFL athletes.

Restricted access

Rob Gathercole, Ben Sporer, Trent Stellingwerff and Gord Sleivert

Purpose:

To examine the reliability and magnitude of change after fatiguing exercise in the countermovement-jump (CMJ) test and determine its suitability for the assessment of fatigue-induced changes in neuromuscular (NM) function. A secondary aim was to examine the usefulness of a set of alternative CMJ variables (CMJ-ALT) related to CMJ mechanics.

Methods:

Eleven male college-level team-sport athletes performed 6 CMJ trials on 6 occasions. A total of 22 variables, 16 typical (CMJ-TYP) and 6 CMJ-ALT, were examined. CMJ reproducibility (coefficient of variation; CV) was examined on participants’ first 3 visits. The next 3 visits (at 0, 24, and 72 h postexercise) followed a fatiguing high-intensity intermittent-exercise running protocol. Meaningful differences in CMJ performance were examined through effect sizes (ES) and comparisons to interday CV.

Results:

Most CMJ variables exhibited intraday (n = 20) and interday (n = 21) CVs of <10%. ESs ranging from trivial to moderate were observed in 18 variables at 0 h (immediately postfatigue). Mean power, peak velocity, flight time, force at zero velocity, and area under the force–velocity trace showed changes greater than the CV in most individuals. At 24 h, most variables displayed trends toward a return to baseline. At 72 h, small increases were observed in time-related CMJ variables, with mean changes also greater than the CV.

Conclusions:

The CMJ test appears a suitable athlete-monitoring method for NM-fatigue detection. However, the current approach (ie, CMJ-TYP) may overlook a number of key fatigue-related changes, and so practitioners are advised to also adopt variables that reflect the NM strategy used.

Restricted access

Lindsay T. Starling and Michael I. Lambert

remaining respondents, 29 (45%) reported that they monitor less than once a week as they do not feel they have the resources to monitor more frequently. Figure 1 —Frequency distribution of the reasons ranked as most important for monitoring by respondents (N = 55). Ideal Athlete-Monitoring Protocol

Restricted access

Alexandra F. DeJong and Jay Hertel

about bouts of intense workouts. This information may be clinically meaningful for in-field athlete monitoring to identify training scenarios and guide decision-making or activity modifications. MPV data plots uncovered patterns associated with the speed-based activity. Sinusoidal MPV patterns were