Search Results

You are looking at 1 - 10 of 132 items for :

  • "balance control" x
Clear All
Restricted access

Tyler B. Weaver, Christine Ma and Andrew C. Laing

The Nintendo Wii Balance Board (WBB) has become popular as a low-cost alternative to research-grade force plates. The purposes of this study were to characterize a series of technical specifications for the WBB, to compare balance control metrics derived from time-varying center of pressure (COP) signals collected simultaneously from a WBB and a research-grade force plate, and to investigate the effects of battery life. Drift, linearity, hysteresis, mass accuracy, uniformity of response, and COP accuracy were assessed from a WBB. In addition, 6 participants completed an eyes-closed quiet standing task on the WBB (at 3 battery life levels) mounted on a force plate while sway was simultaneously measured by both systems. Characterization results were all associated with less than 1% error. R 2 values reflecting WBB sensor linearity were > .99. Known and measured COP differences were lowest at the center of the WBB and greatest at the corners. Between-device differences in quiet stance COP summary metrics were of limited clinical significance. Lastly, battery life did not affect WBB COP accuracy, but did influence 2 of 8 quiet stance WBB parameters. This study provides general support for the WBB as a low-cost alternative to research-grade force plates for quantifying COP movement during standing.

Restricted access

Michelle R. Tanel, Tyler B. Weaver and Andrew C. Laing

many countries (eg, Canada 7 ) is increasing, there is clinical value in research that characterizes balance control mechanisms toward informing fall-prevention strategies. From a basic mechanistic perspective, to prevent falling we must be able to maintain balance while standing still (quasi

Restricted access

William W.N. Tsang and Christina W.Y. Hui-Chan

Purpose:

To determine whether older golfers have better static and dynamic balance control than older but nongolfing healthy adults.

Methods:

Eleven golfers and 12 control participants (all male; 66.2 ± 6.8 and 71.3 ± 6.6 yr old, respectively) were recruited. Duration of static single-leg stance was timed. Control of body sway was assessed in single-leg stance during forward and backward platform perturbations. The lunge distance normalized with respect to each participant’s height was used to compare the 2 groups in a forward-lunge test.

Results:

Golfers maintained significantly longer duration in static single-leg stance. They achieved less anteroposterior body sway in perturbed single-leg stance and lunged significantly farther than did control participants.

Conclusions:

The better static and dynamic balance control exhibited by older golfers possibly reflects the effects of weight transfers from repeated golf swings during weight shift from 2-leg to predominantly 1-leg stance and from walking on uneven fairways.

Restricted access

Shani Batcir and Itshak Melzer

-Aulin, & Denis, 2006 ); improves gait parameters ( Nadeau et al., 2017 ); executive function ( Anderson-Hanley et al., 2012 ; Nadeau et al., 2017 ); and quality of life ( Smart et al., 2013 ) in older adults. Studies investigating the effects of exercise programs involving cycling as a means of balance control

Restricted access

Robert D. Catena, Nigel Campbell, Alexa L. Werner and Kendall M. Iverson

-related emergency room visits. 2 – 4 The likelihood of a fall during pregnancy should be directly related to the dynamic balance control of the individual. 5 Despite the likelihood of this relationship, dynamic balance changes during pregnancy are rarely clinically tested and not typically considered in

Restricted access

Mark G.L. Sayers, Amanda L. Tweddle and Jessika Morris

This project assessed dynamic balance and stability in aged lawn bowlers during the delivery stride. Participants were divided into two groups: aged 65 years or less (n = 14) and aged over 65 years (n = 16). Standard balance-based center of pressure (CoP) and ground reaction force variables were recorded and a Dynamic Postural Stability Index (DPSI) was used for calculating during ten deliveries. None of the balance variables correlated significantly with age although years of bowling experience correlated with DPSI scores (r = -.42, P = .019). The over 65 group had significantly greater variance in the mediolateral CoP movements, with no other significant differences in balance or postural stability variables between groups. Analysis of covariance indicated that the DPSI data were influenced significantly by bowling experience regardless of age group. It was concluded that in older aged lawn bowlers, playing experience rather than age is a key determinant of balance control during the lawn bowls delivery action.

Restricted access

Telassin Silva Homem, Fernando Silva Guimarães, Maurício Santos Soares, Leandro Kasuki, Mônica Roberto Gadelha and Agnaldo José Lopes

Advances in the knowledge of acromegaly are leading to an increase in the survival rate of acromegalic subjects. This study was conducted to evaluate balance control, risk of falls, and peripheral muscle function in acromegalic older adults. Seventeen older subjects with acromegaly (67 [63–73] years) and 20 paired control subjects were evaluated with balance scales, force platform, and knee isokinetic dynamometry tests. There were significant differences between the groups on several balance and gait scales, with a worse performance and greater risk of falls in the acromegalic older adults. Acromegalic older adults had lower values for peak torque, maximum repetition of the total work, and total work during extension at 240°/s. The acromegalic older adults had higher values in the medial-lateral range. Acromegaly subjects had lateral instability that compromises their body balance and increases the risk of falls. Moreover, there was a propensity for muscle fatigue in these individuals.

Restricted access

Giorgos Sofianidis, Vassilia Hatzitaki, Stella Douka and Giorgos Grouios

This preliminary study examined the effect of a 10-wk traditional Greek dance program on static and dynamic balance indices in healthy elderly adults. Twenty-six community-dwelling older adults were randomly assigned to either an intervention group who took supervised Greek traditional dance classes for 10 wk (1 hr, 2 sessions/week, n = 14), or a control group (n = 12). Balance was assessed pre- and postintervention by recording the center-of-pressure (COP) variations and trunk kinematics during performance of the Sharpened-Romberg test, 1-leg (OL) stance, and dynamic weight shifting (WS). After practice, the dance group significantly decreased COP displacement and trunk sway in OL stance. A significant increase in the range of trunk rotation was noted during performance of dynamic WS in the sagittal and frontal planes. These findings support the use of traditional dance as an effective means of physical activity for improving static and dynamic balance control in the elderly.

Restricted access

Hadas Gabizon, Yan Press, Ilia Volkov and Itshak Melzer

Objectives:

To evaluate the effect of a group-based Pilates training program on balance control and health status in healthy older adults.

Design:

A single-blind, randomized, controlled trial.

Setting:

General community.

Participants:

A total of 88 community-dwelling older adults (age 71.15 ± 4.30 years), without evidence of functional balance impairment, were recruited and allocated at random to a Pilates intervention group (n = 44) or a control group (n = 44).

Intervention:

The Pilates intervention group received 36 training sessions over three months (3 sessions a week), while the control group did not receive any intervention.

Outcome measures:

Standing upright postural stability, performance-based measures of balance, and self-reported health status was assessed in both groups at baseline and at the end of the intervention period.

Results:

Compared with the control group, the Pilates intervention did not improve postural stability, baseline functional measures of balance, or health status.

Conclusions:

The results suggest that because Pilates training is not task specific, it does not improve balance control or balance function in independent older adults.

Restricted access

Wei Sun, Xiujie Ma, Lin Wang, Cui Zhang, Qipeng Song, Houxin Gu and Dewei Mao

ability ( Gába et al., 2016 ). Regular TCC exercise could improve balance control, but the essential training duration for improvements remains unclear. Moreover, the few studies on the effects of BW on balance ability in the elderly have shown contradictory results. The present study aims to assess the