Search Results

You are looking at 1 - 10 of 24 items for :

  • "barefoot running" x
Clear All
Restricted access

Christian Maiwald, Stefan Grau, Inga Krauss, Marlene Mauch, Detlef Axmann and Thomas Horstmann

The aim of this study was to provide detailed information on rationales, calculations, and results of common methods used to quantify reproducibility in plantar pressure variables. Recreational runners (N = 95) performed multiple barefoot running trials in a laboratory setup, and pressure variables were analyzed in nine distinct subareas of the foot. Reproducibility was assessed by calculating intraclass correlation coefficients (ICC) and the root mean square error (RMSE). Intraclass correlation coefficients ranged from 0.58 to 0.99, depending on the respective variable and type of ICC. Root mean square errors ranged between 2.3 and 3.1% for relative force–time integrals, between 0.07 and 0.23 for maximum force (Fmax), and between 107 and 278 kPa for maximum pressure (Pmax), depending on the subarea of the foot. Force–time integral variables demonstrated the best within-subject reproducibility. Rear-foot data suffered from slightly increased measurement error and reduced reproducibility compared with the forefoot.

Restricted access

Isabel S. Moore and Sharon J. Dixon

Interest in barefoot running and research on barefoot running are growing. However a methodological issue surrounding investigations is how familiar the participants are with running barefoot. The aim of the study was to assess the amount of time required for habitually shod runners to become familiar with barefoot treadmill running. Twelve female recreational runners, who were experienced treadmill users, ran barefoot on a treadmill for three bouts, each bout consisting of 10 minutes at a self-selected speed with 5 minute rest periods. Sagittal plane kinematics of the hip, knee, ankle, and foot during stance were recorded during the first and last minute of each 10-minute bout. Strong reliability (ICC > .8) was shown in most variables after 20 minutes of running. In addition, there was a general trend for the smallest standard error of mean to occur during the same period. Furthermore, there were no significant differences in any of the biomechanical variables after 20 minutes of running. Together, this suggests that familiarization was achieved between 11 and 20 minutes of running barefoot on a treadmill. Familiarization was characterized by less plantar flexion and greater knee flexion at touchdown. These results indicate that adequate familiarization should be given in future studies before gait assessment of barefoot treadmill running.

Restricted access

Peter Francis, Cassie Oddy and Mark I. Johnson

In a 27-year-old female triathlete, magnetic resonance imaging revealed mild thickening and edema at the calcaneal insertion of the plantar fascia, in keeping with a degree of plantar fasciitis. After 6 weeks of conservative treatment failed to elicit a return to sport, the patient engaged in six sessions of barefoot running (15–30 min) on a soft grass surface, without further conservative treatment. After two sessions of barefoot running, the patient was asymptomatic before, during, and after running. This outcome was maintained at the 6-week follow-up period. This is the first case report to use barefoot running as a treatment strategy for chronic heel pain. Barefoot running has the potential to reduce the load on the plantar fascia and warrants further investigation using a case series.

Restricted access

Pui W. Kong and Norma G. Candelaria

This study aimed to 1) determine the suitability of using spanning set (SS) to measure knee angle variability in the entire gait cycle and 2) assess the sensitivity of SS magnitude to the order of polynomial fitted to the standard deviation (SD) curves of the mean ensemble curves. Eight runners performed 10 over-ground barefoot running trials, followed by 8 min of accommodation, and then another 10 trials. Knee angle variabilities before and after accommodation were assessed using the SS and two conventional methods: mean coefficient of variation and mean SD. The sensitivity of the SS magnitude was assessed by calculating SS using (n–2), (n–1), (n+1), and (n+2)th orders of polynomials, where nth is the best fit order. Variability decreased after accommodation using the conventional methods (p < .05) but not the SS. The SS magnitude was sensitive to the order of polynomial. It is concluded that the SS may not be appropriate for measuring knee kinematic variability in the entire gait cycle during over-ground barefoot running.

Restricted access

Thibault Lussiana, Kim Hébert-Losier, Grégoire P. Millet and Laurent Mourot

The effects of footwear and inclination on running biomechanics over short intervals are well documented. Although recognized that exercise duration can impact running biomechanics, it remains unclear how biomechanics change over time when running in minimalist shoes and on slopes. Our aims were to describe these biomechanical changes during a 50-minute run and compare them to those observed in standard shoes. Thirteen trained recreational male runners ran 50 minutes at 65% of their maximal aerobic velocity on a treadmill, once in minimalist shoes and once in standard shoes, 1 week apart in a random order. The 50-minute trial was divided into 5-minute segments of running at 0%, +5%, and –5% of treadmill incline sequentially. Data were collected using photocells, high-speed video cameras, and plantar-pressure insoles. At 0% incline, runners exhibited reduced leg stiffness and plantar flexion angles at foot strike and lower plantar pressure at the forefoot and toes in minimalist shoes from minute 34 of the protocol onward. However, only reduced plantar pressure at the toes was observed in standard shoes. Overall, similar biomechanical changes with increased exercise time were observed on the uphill and downhill inclines. The results might be due to the unfamiliarity of subjects to running in minimalist shoes.

Restricted access

Ricardo Pires, Thays Falcari, Alexandre B. Campo, Bárbara C. Pulcineli, Joseph Hamill and Ulysses Fernandes Ervilha

muscle activation differs according to the rate of application of the impact forces as well as the interaction between the foot and the ground. 5 It is not clear whether the electromyographic (EMG) signal differences obtained when comparing shod and barefoot running are solely related to the way the

Restricted access

Caroline Divert, Heiner Baur, Guillaume Mornieux, Frank Mayer and Alain Belli

When mechanical parameters of running are measured, runners have to be accustomed to testing conditions. Nevertheless, habituated runners could still show slight evolutions of their patterns at the beginning of each new running bout. This study investigated runners' stiffness adjustments during shoe and barefoot running and stiffness evolutions of shoes. Twenty-two runners performed two 4-minute bouts at 3.61 m·s–1 shod and barefoot after a 4-min warm-up period. Vertical and leg stiffness decreased during the shoe condition but remained stable in the barefoot condition, p < 0.001. Moreover, an impactor test showed that shoe stiffness increased significantly during the first 4 minutes, p < 0.001. Beyond the 4th minute, shoe properties remained stable. Even if runners were accustomed to the testing condition, as running pattern remained stable during barefoot running, they adjusted their leg and vertical stiffness during shoe running. Moreover, as measurements were taken after a 4-min warm-up period, it could be assumed that shoe properties were stable. Then the stiffness adjustment observed during shoe running might be due to further habituations of the runners to the shod condition. To conclude, it makes sense to run at least 4 minutes before taking measurements in order to avoid runners' stiffness alteration due to shoe property modifications. However, runners could still adapt to the shoe.

Restricted access

George Vagenas and Blaine Hoshizaki

This study investigated the phenomenon of kinematic asymmetry of the lower limbs in distance runners. The subjects, 29 male distance runners, were recorded by high-speed filming while running on a motor driven treadmill under two experimental conditions (with running shoes and barefoot). Twelve selected kinematic variables were subjected to multivariate statistical analysis. It was demonstrated that the lower limbs of distance runners possess a multifaceted kinematic asymmetry for touchdown and foot contact as well as for the entire phase of foot support of the running stride. Significant kinematic asymmetries were found in the lower leg angle, rearfoot angle, mediolateral velocity of the foot, and in some temporal variables. Contemporary running shoes seem to significantly change the degree of rearfoot control asymmetry observed in normal barefoot running. The findings of the present study confirm previous data suggesting that the phenomenon of kinematic asymmetry in runners is warranted.

Restricted access

Alex Stacoff, Xaver Kaelin, Edgar Stuessi and Bernhard Segesser

In the research of running shoes, excessive pronation is often related to various running injuries. Anatomically, pronation is a movement that occurs in more than one joint. Previous investigations that evaluated the pronation in running studied the movements of the lower leg and the rearfoot only. However, pronation could also be influenced by the movement of the forefoot and therefore depend on the torsional stiffness of the foot and of the shoe sole. This study investigated the relationship between the torsion and the pronation in running with a rearfoot touchdown and with a forefoot touchdown. The results show that, compared to running barefoot, running with a shoe decreases torsion and thereby increases pronation significantly (p < 0.01) for the forefoot and rearfoot touchdown conditions. Thus the reduction of torsional movement due to stiff shoe soles could well be a reason for running injuries caused by excessive pronation. It is concluded that modern running shoes could be designed to allow a certain torsional movement of the foot.

Restricted access

Arnel Aguinaldo and Andrew Mahar

This study evaluated the effects of running shoes—with two types of cushioning column systems—on impact force patterns during running. Kinematic and ground reaction force data were collected from 10 normal participants wearing shoes with the following cushions: 4-column multicellular urethane elastomer (Shoe 1), 4-column thermoplastic polyester elastomer (Shoe 2), and 1-unit EVA foam (Shoe 3). Participants exhibited significantly lower impact force (p = .02) and loading rate (p = .005) with Shoe 2 (1.84 ± 0.24 BW; 45.6 ± 11.6 BW/s) compared to Shoe 1 (1.94 ± 0.18 BW; 57.9 ± 12.1 BW/s). Both cushioning column shoes showed impact force characteristics similar to those of a top-model running shoe (Shoe 3), and improved cushioning performance over shoes previously tested in similar conditions. Alterations in impact force patterns induced by lower limb alignment and running speed were negligible since participants did not differ in ankle position, knee position, or speed during all shod running trials. Ankle plantarflexion, however, was higher for barefoot running, indicating an apparent midfoot strike. Mechanical testing of each shoe during physiologic, cyclic loading demonstrated that Shoe 3 had the greatest stiffness, followed by Shoe 2 and Shoe 1. Shoe 1 was the least stiff of the two shoes with cushioning column systems, yet it displayed a significantly higher impact loading rate during running, possibly due to rearfoot motion alterations induced by the stiffer shoe. This study showed that even in similar shoe types, impact force and loading rate values could vary significantly with midsole cushion constructions. The findings of this study suggest that using these newer running shoes may be effective for runners who want optimal cushioning during running.