Search Results

You are looking at 1 - 10 of 309 items for :

Clear All
Restricted access

Bernardo Gialanella, Francesco Grossetti, Marina Mazza, Laura Danna and Laura Comini

studies have been conducted, 5 – 10 the impact of the long head of the biceps surgery (tenotomy/tenodesis) on rehabilitation and outcomes has not yet been clearly defined. Moreover, the aforementioned studies analyzed long-term effect where the outcome was evaluated 1 year 10 or more 5 – 9 after the

Restricted access

Yin-Chou Lin, Angela Thompson, Jung-Tang Kung, Liang-Wei Chieh, Shih-Wei Chou and Jung-Charng Lin

Context:

Elbow injuries are widely reported among baseball players. The elbow is susceptible to injury when elbow-flexor and -extensor forces are imbalanced during pitching or throwing. Assessment of muscle-strength ratios may prove useful for diagnosing elbow injury.

Objective:

The purpose of this study was to assess the relationship between the elbow-flexor and -extensor functional isokinetic ratios and elbow injury in baseball players.

Design:

Retrospective study.

Setting:

Biomechanics laboratory.

Participants:

College baseball players with (n = 9) and without (n = 12) self-reported elbow pain or loss of strength were recruited.

Intervention and Main Outcome Measures:

Trials were conducted using a dynamometer to assess dominant-arm flexor and extensor concentric and eccentric strength at angular velocities of 60° and 240°/s. Functional isokinetic ratios were calculated and compared between groups.

Results:

Regression analysis revealed that a ratio of biceps concentric to triceps concentric strength greater than 0.76 (the median value) significantly predicted elbow injury (P = .01, odds ratio of injury = 24). No other ratios or variables (including position played) were predictive of injury status.

Conclusions:

These findings suggest that the ratio of biceps concentric to triceps concentric functional strength strongly predicts elbow-injury status in baseball players. Assessment of this ratio may prove useful in a practical setting for training purposes and both injury diagnosis and rehabilitation.

Restricted access

Sofia I. Lampropoulou and Alexander V. Nowicky

The way psychometric and neurophysiological measurements of fatigue are connected is not well understood. Thus, the time course of perceived effort changes due to fatigue, as well as the peripheral and central neurophysiological changes accompanying fatigue, were evaluated. Twelve healthy participants (35 ± 9 years old) undertook 10 min intermittent isometric fatiguing exercise of elbow flexors at 50% of maximum voluntary contraction (MVC). Perceived effort ratings, using the 0–10 numeric rating scale (NRS), were recorded at midrange of MVC. Single pulse TMS of the left motor cortex and electrical stimulation over the biceps muscle was used for the assessment of voluntary activation and peripheral fatigue. The fatiguing exercise caused a 44% reduction in the MVC (p < .001) accompanied by an 18% nonsignificant reduction of the biceps MEP amplitude. The resting twitch force decreased (p < .001) while the superimposed twitches increased (p < .001) causing a decrease (19%) of the voluntary activation (p < .001). The perceived effort ratings increased by 1 point at 30%, by 2 points at 50% MVC respectively on the NRS (p < .001) and were accompanied by an increase in mean biceps EMG. A substantial role of the perceived effort in the voluntary motor control system was revealed.

Restricted access

Laurie Y. Hung, Emmalee Maracle, John Z. Srbely and Stephen H.M. Brown

Evidence has shown that upper limb muscles peripheral to the cervical spine, such as the biceps brachii, can demonstrate functional deficits in the presence of chronic neck pain. However, few studies have examined how neck pain can affect the fatigability of upper limb muscles; therefore we were motivated to investigate the effects of acutely induced neuropathic neck pain on the fatigability of the biceps brachii muscle during isometric contraction to exhaustion. Topical capsaicin was used to induce neck pain in 11 healthy male participants. Surface EMG signals were recorded from the biceps brachii during an isometric elbow flexion fatigue task in which participants held a weight equivalent to 30% of their MVC until exhaustion. Two experimental sessions, one placebo and one capsaicin, were conducted separated by two days. EMG mean power frequency and average normalized activation values were calculated over the course of the fatigue task. In the presence of pain, there was no statistically significant effect on EMG parameters during fatigue of the biceps brachii. These results demonstrate that acutely induced neuropathic neck pain does not affect the fatigability, under the tested conditions, of the biceps brachii.

Restricted access

Kohei Watanabe, Motoki Kouzaki and Toshio Moritani

In some muscles, nonuniform surface electromyography (EMG) responses have been demonstrated within a muscle, meaning that the electrode location could be critical in the results of surface EMG. The current study investigated possible region-specific EMG responses within the human biceps femoris (BF) muscle. Surface EMG was recorded from various regions along the longitudinal axis of the BF muscle with 20 electrodes. Ten healthy men performed maximal isometric contractions of hip extension and knee flexion, which involve the BF muscle. The ratio of the EMG amplitude between hip extension and knee flexion tasks (HE/KF) was calculated and compared among the regions. There were no significant differences in HE/KF among the regions along the BF muscle (P > .05). This suggests that the entire superficial region of the BF muscle is equally regulated in the 2 different tasks. We suggest that the electrode location is not critical in estimating the activation properties and/or functional role of the superficial region, which corresponds with approximately 50% of the muscle length of the BF muscle, using surface EMG during maximal contraction.

Restricted access

Paul Comfort, Amy Regan, Lee Herrington, Chris Thomas, John McMahon and Paul Jones

Context:

Regular performance (~2×/wk) of Nordic curls has been shown to increase hamstring strength and reduce the risk of hamstring strain injury, although no consensus on ankle position has been provided.

Objective:

To compare the effects of performing Nordic curls, with the ankle in a dorsiflexed (DF) or plantar-flexed (PF) position, on muscle activity of the biceps femoris (BF) and medial gastrocnemius (MG).

Participants:

15 male college athletes (age 22.6 ± 2.1 y, height 1.78 ± 0.06 m, body mass 88.75 ± 8.95 kg).

Design:

A repeated-measures design was used, with participants performing 2 sets of 3 repetitions of both variations of Nordic curls, while muscle activity was assessed via surface electromyography (EMG) of the BF and MG. Comparisons of muscle activity were made by examining the normalized EMG data as the percentage of their maximum voluntary isometric contraction.

Results:

Paired-samples t test revealed no significant difference in normalized muscle activity of the BF (124.5% ± 6.2% vs 128.1 ± 5.0%, P > .05, Cohen d = 0.64, power = .996) or MG (82.1% ± 3.9% vs 83.5 ± 4.8%, P > .05, Cohen d = 0.32, power = .947) during the Nordic curls in a PF or DF position, respectively.

Conclusion:

Ankle position does not influence muscle activity during the Nordic curl; however, performance of Nordic curls with the ankle in a DF position may be preferential, as this replicates the ankle position during terminal leg swing during running, which tends to be the point at which hamstring strains have been reported.

Restricted access

Bret Contreras, Andrew D. Vigotsky, Brad J. Schoenfeld, Chris Beardsley and John Cronin

The back squat and barbell hip thrust are both popular exercises used to target the lower body musculature; however, these exercises have yet to be compared. Therefore, the purpose of this study was to compare the surface electromyographic (EMG) activity of the upper and lower gluteus maximus, biceps femoris, and vastus lateralis between the back squat and barbell hip thrust. Thirteen trained women (n = 13; age = 28.9 years; height = 164 cm; mass = 58.2 kg) performed estimated 10-repetition maximums (RM) in the back squat and barbell hip thrust. The barbell hip thrust elicited significantly greater mean (69.5% vs 29.4%) and peak (172% vs 84.9%) upper gluteus maximus, mean (86.8% vs 45.4%) and peak (216% vs 130%) lower gluteus maximus, and mean (40.8% vs 14.9%) and peak (86.9% vs 37.5%) biceps femoris EMG activity than the back squat. There were no significant differences in mean (99.5% vs 110%) or peak (216% vs 244%) vastus lateralis EMG activity. The barbell hip thrust activates the gluteus maximus and biceps femoris to a greater degree than the back squat when using estimated 10RM loads. Longitudinal training studies are needed to determine if this enhanced activation correlates with increased strength, hypertrophy, and performance.

Restricted access

Ryota Akagi, Soichiro Iwanuma, Satoru Hashizume, Hiroaki Kanehisa, Toshimasa Yanai and Yasuo Kawakami

The purpose of this study was to investigate how the contraction-induced increase in distal biceps brachii tendon moment arm is related to that in elbow flexor muscle thickness, with a specific emphasis on the influence of the site-related differences in muscle thickness. The moment arm and muscle thickness were determined from sagittal and cross-sectional images, respectively, of the right arm obtained by magnetic resonance imaging of nine young men. The muscle thickness was measured at levels from the reference site (60% of the upper arm length from the acromial process of the scapula to the lateral epicondyle of the humerus) to 60 mm distal to it (every 10 mm; 7 measurement sites). At 80° of elbow flexion, the moment arm and muscle thickness were determined at rest and during 60% of maximal voluntary contraction (60%MVC) of isometric elbow flexion. Only the relative change from rest to 60%MVC in muscle thickness at the level 60 mm distal to the reference site correlated significantly with that of the moment arm. This result indicates that the contraction-induced increase in distal biceps brachii tendon moment arm is related to that in elbow flexor muscle thickness near the corresponding muscle-tendon junction.

Restricted access

David B. Copithorne, Davis A. Forman and Kevin E. Power

The purpose of this study was to determine if supraspinal and/or spinal motoneuron excitability of the biceps brachii were differentially modulated before: 1) arm cycling and 2) an intensity-matched tonic contraction. Surface EMG recordings of motor evoked potentials (MEPs) and cervicomedullary motor evoked potentials (CMEPs) were used to assess supraspinal and spinal motoneuron excitability, respectively. MEP amplitudes were larger and onset latencies shorter, before arm cycling and tonic contraction when compared with rest with no intent to move, but with no difference between motor outputs. CMEP amplitudes and onset latencies remained unchanged before cycling and tonic contraction compared with rest. Premovement enhancement of corticospinal excitability was due to an increase in supraspinal excitability that was not task-dependent. This suggests that a common neural drive is used to initiate both motor outputs with task-dependent changes in neural excitability only being evident once the motor outputs have begun.

Restricted access

Bret Contreras, Andrew D. Vigotsky, Brad J. Schoenfeld, Chris Beardsley and John Cronin

Bridging exercise variations are well researched and commonly employed for both rehabilitation and sport performance. However, resisted bridge exercise variations have not yet been compared in a controlled experimental study. Therefore, the purpose of this study was to compare the differences in upper and lower gluteus maximus, biceps femoris, and vastus lateralis electromyography (EMG) amplitude for the barbell, band, and American hip thrust variations. Thirteen healthy female subjects (age = 28.9 y; height = 164.3 cm; body mass = 58.2 kg) familiar with the hip thrust performed 10 repetitions of their 10-repetition maximum of each variation in a counterbalanced and randomized order. The barbell hip thrust variation elicited statistically greater mean gluteus maximus EMG amplitude than the American and band hip thrusts, and statistically greater peak gluteus maximus EMG amplitude than the band hip thrust (P ≤ .05), but no other statistical differences were observed. It is recommended that resisted bridging exercise be prescribed according to the individual’s preferences and desired outcomes.