Search Results

You are looking at 1 - 10 of 83 items for :

Clear All
Restricted access

Eric G. James

The HKB model and its variants characterize bimanual coordination with fixedpoint dynamics and predict stationarity of the mean and variance of relative phase in stable coordinative states. In the current study, participants performed in-phase and antiphase coordination modes in rhythmic bimanual finger and elbow flexionextension tasks. The results of runs tests revealed that discrete relative phase was nonstationary in 49.25%, 50.25%, and 54% of time-series in the 10, 20, and 30 box runs tests, respectively. In all individual Task conditions >38% of time-series were nonstationary. These findings contradicted model predictions that the mean and variance of relative phase are stationary in bimanual coordination and distinguish the concept of dynamical stability from statistical stationarity. The findings indicated that relative phase was not attracted to a stationary fixed-point and that fluctuations in relative phase are not Gaussian white noise as in existing models of bimanual coordination.

Restricted access

Steve Hansen, James L. Lyons and Katherine M. Keetch

This study examined the performance of the upper limbs during responses to previously cued and un-cued locations. Participants made unimanual and bimanual responses under homologous and non-homologous muscular control, within a cuetarget (Experiment 1; n = 10), and a target-target (Experiment 2; n = 10) aiming protocol. The inhibition of return (IOR) to a target location was expected to increase with (a) an increase in the organization of the movement response required, and (b) the decrease in the muscular coupling under which the bimanual movement was performed. IOR was observed in both experiments when participants completed their movements in either the unimanual or homologous conditions, but not in the non-homologous condition. In addition, reaction times were significantly shorter when a movement preceded the response than when no manual response was made to the initial visual cue. The results indicate that common processing delays in response to exogenously cued targets are dependent on the muscular control of those responses. Thus, this study provides evidence that IOR is moderated by the muscular control under which the bimanual movement was performed indicating an influential involvement of the motor system in both the movement planning and movement response to multiple target stimuli.

Restricted access

M.J.M. Volman

The effect of amplitude incongruence (small circles–large circles) and form incongruence (circles–lines) on the performance of the affected and non-affected arm was examined in 12 children with hemiplegic cerebral palsy in bimanual rhythmic drawing tasks. Amplitude and form incongruence are assumed to be associated with aspects of movement execution and movement planning, respectively. The following questions were addressed: Does amplitude or form incongruence in bimanual coordination result in: (a) accommodation of the affected or non-affected arm, or both, (b) an increase of temporal variability of drawing movements of the affected or non-affected arm, and (c) a decrease of bimanual coordination stability? Form incongruence resulted in accommodation of both affected and non-affected arm in a similar way found in non-disabled participants. Despite this accommodation, the temporal variability of both affected and non-affected arm was increased, and coordination stability decreased, because the spatial trajectories of affected and non-affected arm were still rather dissimilar. Amplitude incongruence resulted in accommodation of either the affected arm (large circles required) or non-affected arm (small circles required), and in an increase or decrease of temporal variability of the affected arm, depending on the degree of spatial similarity of the trajectories of affected and non-affected arm. These findings suggest that in children with hemiplegic cerebral palsy aspects of movement execution, but not aspects of movement planning are affected by the “hemiplegic” condition.

Restricted access

Loes Janssen, Céline Crajé, Matthias Weigelt and Bert Steenbergen

We examined anticipatory motor planning and the interaction among both hands in a discrete bimanual task. To this end, participants had to grasp and manipulate two cylindrical objects simultaneously under varying conditions in which (a) the grip selection requirements, i.e., orientation of the to-be-grasped objects, differed between the two hands and (b) the type of grip for one hand was preinstructed, while the grip for the other hand was free choice. Results showed that participants, when grasping for two bars with a free grip choice, prioritized planning for comfortable end postures over symmetry of movement execution. Furthermore, when participants were free to choose a grip for their left hand, but were instructed on how to grasp an object with their right hand, we found no interaction between the grip selections of both hands, suggesting that motor planning proceeds independently for both hands.

Restricted access

Alessia Longo and Ruud Meulenbroek

flexibility. This study was set up to examine how movement variability changes in healthy participants during sustained bimanual reaching under controlled precision conditions, in particular with regard to movement time (MT), end-point variability, approximate entropy (ApEn), and standard deviation (SD) of

Restricted access

Jeffery J. Summers, Winston D. Byblow, Don F. Bysouth-Young and Andras Semjen

Seven right-handed participants performed bimanual circling movements in either a symmetrical or an asymmetrical coordination mode. Movements were paced with an auditory metronome at predetermined frequencies corresponding to transition frequency, where asymmetrical patterns became unstable, or at two-thirds transition frequency, where both symmetrical and asymmetrical patterns were stable. The pacing tones were presented in either a high (1000 Hz) or low (500 Hz) pitch, and the percentage of high-pitched tones during a 20 s trial varied between 0% and 70%. Participants were instructed to count the number of high-pitched pacing tones that occurred during a trial of bimanual circling. Overall, the symmetrical pattern was more stable than the asymmetrical pattern at both frequencies. Errors on the tone-counting task were significantly higher during asymmetrical circling than symmetrical circling but only at the transition movement frequency. The results suggest that cognitive processes play a role in maintaining coordination patterns within regions of instability.

Restricted access

Sukhvinder S. Obhi

Using more than one limb to perform functional, goal-directed actions is arguably one of the most important abilities that human beings possess. In many everyday tasks, the hands, in particular, must be used to accomplish all manner of goals. From buttoning a shirt to opening a jam jar and driving to work, good bimanual coordination is of great utility. In addition to the tasks mentioned above, there are also other tasks involving the functional use of more than one limb, including walking or cycling and typing a report. With a little thought, it becomes apparent that there is at least one important difference between these categories of coordination tasks. On one hand, in some tasks the effectors must perform markedly different motor outputs that are bound together in some functionally defined and usually object-oriented manner (e.g., buttoning a shirt) yet, in others, the effectors produce very similar motor outputs but in a specific temporal order, which may or may not repeat itself periodically (e.g., walking and cycling compared to typing or drumming). In this short article, I will argue that the second category of coordination task and, in particular, cyclical coordination, has been studied extensively and, at least at the level of behavior, is relatively well understood. In contrast the former category of bimanual task is seldom studied and, even at the descriptive level, is rather poorly understood. One of the reasons for this may be the complexity of such tasks and the technical difficulties involved in attempting to study them. By highlighting some key studies, I hope to illustrate that such tasks can be fruitfully studied in the laboratory. Last, since the neural control processes underlying both classes of coordination task are not yet well known, I aim to draw attention to the potential value of the interventional technique of Transcranial Magnetic Stimulation (TMS) as a tool for investigating the functions of brain regions contributing to bimanual coordination.

Restricted access

Dana Maslovat, Shannon S.D. Bredin, Romeo Chua and Ian M. Franks

A major component of a dynamical paradigm involves a “scanning” procedure in an attempt to determine an individual’s intrinsic coordination tendencies before learning, as well as subsequent changes in the coordination landscape after practice. The purpose of the present study was to evaluate two methods of the scanning procedure. Scans were performed before and after 75 trials of a 90° bimanual-coordination pattern and were compared with early and late acquisition trials. Four groups of participants performed scanning and acquisition trials using a combination of either concurrent visual feedback in the form of Lissajous figures, paced by an auditory metronome, or visual metronomes in the form of flashing stimuli. Analyses revealed that all groups improved performance of the 90° pattern with practice. As predicted by the theory of practice specificity, scanning via the same method as acquisition appears to be valid. Scanning via Lissajous figures when the acquisition procedure was flashing squares was also found to be valid, but not the opposite condition. Reasons for this unidirectional transfer are given with these results suggesting that the sensitivity of a given scanning method might be influenced by the method of acquiring the coordination pattern.

Restricted access

Shannon D. Ringenbach, Romeo Chua, Brian K. V. Maraj, James C. Kao and Daniel J. Weeks

Previous experiments involving discrete unimanual tasks have shown that individuals with Down syndrome (DS) have auditory/verbal-motor deficits. The present study investigated unimanual and bimanual continuous perceptual-motor actions in adults with DS. Ten adults with DS, 10 typical adults, and 10 children drew continuous circles at increasing periods bimanually and unimanually with each hand. Movement was paced by either a visual or an auditory metronome. The results revealed that for circle shape and coordination measures, children and adults were more accurate with the visual metronome, whereas adults with DS were more accurate with the auditory metronome. In the unimanual tasks, adults with DS displayed hand asymmetries on spatial measures. In the bimanual task, however, adults with DS adopted an in-phase coordination pattern and stability more similar to adults than children. These results suggest that bimanual coordination in adults with DS is functioning effectively despite hand asymmetries evident in unimanual performance.

Restricted access

Nobuyuki Inui

An experiment was conducted to examine the coupling of force variability in bimanual finger tapping sequences with asymmetrical forces. Right-handed participants were trained to produce bimanual finger tapping sequences consisted of an intertap interval of 500 ms and eight force conditions: two alternating force left high, two alternating force right high, two simultaneous force left high, and two simultaneous force right high conditions. During practice, visual force feedback was provided for both hands performing the bimanual tapping sequences. After practice, the participants produced the learned tapping sequences in the absence of feedback. Most importantly, whereas the peak force variability of the nondominant left hand was larger than that of the dominant right hand under the right high conditions, there was no left–right difference under the simultaneous left high conditions. This suggests that under the simultaneous left high conditions, both hemispheres were activated, resulting in overflow in the right hand, and bringing the two force variabilities closer together.