Search Results

You are looking at 1 - 3 of 3 items for :

  • "cadaveric experiments" x
Clear All
Restricted access

Jennifer A. Nichols, Michael S. Bednar, Robert M. Havey and Wendy M. Murray

At the wrist, kinematic coupling (the relationship between flexion-extension and radial-ulnar deviation) facilitates function. Although the midcarpal joint is critical for kinematic coupling, many surgeries, such as 4-corner fusion (4CF) and scaphoidexcision 4-corner fusion (SE4CF), modify the midcarpal joint. This study examines how 4CF and SE4CF influence kinematic coupling by quantifying wrist axes of rotation. Wrist axes of rotation were quantified in 8 cadaveric specimens using an optimization algorithm, which fit a 2-revolute joint model to experimental data. In each specimen, data measuring the motion of the third metacarpal relative to the radius was collected for 3 conditions (nonimpaired, 4CF, SE4CF). The calculated axes of rotation were compared using spherical statistics. The angle between the axes of rotation was used to assess coupling, as the nonimpaired wrist has skew axes (ie, angle between axes approximately 60°). Following 4CF and SE4CF, the axes are closer to orthogonal than those of the nonimpaired wrist. The mean angle (±95% confidence interval) between the axes was 92.6° ± 25.2° and 99.8° ± 22.0° for 4CF and SE4CF, respectively. The axes of rotation defined in this study can be used to define joint models, which will facilitate more accurate computational and experimental studies of these procedures.

Restricted access

Alexander Tsouknidas, Nikoalos Michailidis, Savvas Savvakis, Kleovoulos Anagnostidis, Konstantinos-Dionysios Bouzakis and Georgios Kapetanos

This study presents a CT-based finite element model of the lumbar spine taking into account all function-related boundary conditions, such as anisotropy of mechanical properties, ligaments, contact elements, mesh size, etc. Through advanced mesh generation and employment of compound elements, the developed model is capable of assessing the mechanical response of the examined spine segment for complex loading conditions, thus providing valuable insight on stress development within the model and allowing the prediction of critical loading scenarios. The model was validated through a comparison of the calculated force-induced inclination/deformation and a correlation of these data to experimental values. The mechanical response of the examined functional spine segment was evaluated, and the effect of the loading scenario determined for both vertebral bodies as well as the connecting intervertebral disc.

Restricted access

. Dennison * 2 2017 33 1 2 11 10.1123/jab.2016-0026 Decoupling the Wrist: A Cadaveric Experiment Examining Wrist Kinematics Following Midcarpal Fusion and Scaphoid Excision Jennifer A. Nichols * Michael S. Bednar * Robert M. Havey * Wendy M. Murray * 2 2017 33 1 12 23 10.1123/jab.2015-0324 Single