Search Results

You are looking at 1 - 10 of 61 items for :

  • "carbohydrate supplementation" x
Clear All
Restricted access

Caitlin Campbell, Diana Prince, Marlia Braun, Elizabeth Applegate and Gretchen A. Casazza

Numerous studies have shown that ingesting carbohydrate in the form of a drink can improve exercise performance by maintaining blood glucose levels and sparing endogenous glycogen stores. The effectiveness of carbohydrate gels or jellybeans in improving endurance performance has not been examined. On 4 separate days and 1–2 hr after a standardized meal, 16 male (8; 35.8 ± 2.5 yr) and female (8; 32.4 ± 2.4 yr) athletes cycled at 75% VO2peak for 80 min followed by a 10-km time trial. Participants consumed isocaloric (0.6 g of carbohydrate per kg per hour) amounts of randomly assigned sports beans, sports drink, gel, or water only, before, during, and after exercise. Blood glucose concentrations were similar at rest between treatments and decreased significantly during exercise with the water trial only. Blood glucose concentrations for all carbohydrate supplements were significantly, p < .05, higher than water during the 80-min exercise bout and during the time trial (5.7 ± 0.2 mmol/L for sports beans, 5.6 ± 0.2 mmol/L for sports drink, 5.7 ± 0.3 mmol/L for gel, and 4.6 ± 0.3 mmol/L for water). There were no significant differences in blood glucose between carbohydrate treatments. The 10-km time trials using all 3 carbohydrate treatments were significantly faster (17.2 ± 0.6 min for sports beans, 17.3 ± 0.6 min for sports drink, and 17.3 ± 0.6 min for gel) than water (17.8 ± 0.7 min). All carbohydrate-supplement types were equally effective in maintaining blood glucose levels during exercise and improving exercise performance compared with water only.

Restricted access

Richard B. Kreider, Dawn Hill, Greg Horton, Michael Downes, Sarah Smith and Beth Anders

The purpose of this study was to determine the effects of carbohydrate supplementation during intense training on dietary patterns, psychological status, and markers of anaerobic and aerobic performance. Seven members of the U.S. National Field Hockey Team were matched to 7 team counterparts (N = 14). One group was blindly administered a carbohydrate drink containing 1 g·kg−1 of carbohydrate four times daily, while the remaining group blindly ingested a flavored placebo during 7 days of intense training. Subjects underwent pre- and posttraining aerobic and anaerobic assessments, recorded daily diet intake, and were administered the Profile of Mood States (POMS) psychological inventory prior to and following each practice. Results revealed that the carbohydrate-supplemented group had a greater (p < .05) total energy intake, carbohydrate intake, and change (pre vs. post) in time to maximal exhaustion following training while reporting less postpractice psychological fatigue. However, no significant differences were observed in remaining psychological, physiological, or performance-related variables.

Restricted access

Mark A. Tarnopolsky, Kerry Dyson, Stephanie A. Atkinson, Duncan MacDougall and Cynthia Cupido

We studied the effects of different CHO supplements on exercise metabolism (1 hr at 75% V˙O2) and performance (fatigue time at 85% V˙O2) in 8 male endurance athletes (VO2max=68.8±3.8 mlkg1min1) Four treatments were administered in a randomized, double-blind fashion: Trial A = 3-day pretest, postexercise supplementation (177 kcal [81% carbohydrate, 19% protein] consumed < 10 min after exercise) + 600 ml 8% glucose polymers/ fructose 1 hr pretesting + 600 ml 8% glucose polymers/glucose during testing; Trial B = placebo during 3-day pretest + remainder same as Trial A; Trial C = placebo at all time points; and Trial D = same as Trial B with 8% glucose 1 hr before the test as well as during the test. Time to fatigue at 85% V˙O2max (Í24%) and total CHO oxidation were greater for A versus C (p < .05). Plasma glucose concentration was higher for A and B versus C, while increases in plasma potassium concentration were attenuated for A versus C (both p < .05). None of the supplements had differential effects upon hematocrit, plasma sodium [Na+] and lactate, V˙O2, or rating of perceived exertion during exercise. Three-day preexercise protein + carbohydrate supplements followed by 1-hr pre- and during-exercise mixed carbohydrate supplements increased time to fatigue and carbohydrate oxidation and attenuated rises in plasma [K+] com pared to placebo.

Restricted access

Jason A. Schisler and C. David Ianuzzo


This study determined if recreational type of endurance exercise is limited by a short-term fast, such as an overnight fast or benefited by a carbohydrate supplement prior to and during endurance exercise.


Six individuals ran at 70% VO2max for 90 min under three dietary conditions (fed, fasted for 16 to 18 h, fasted plus CHO).


RPE, RER, BG (blood glucose), and La (lactate) were similar between conditions throughout 90 min of exercise. FFA was higher (P ≤ 0.05) only in the fed and fasted groups after exercise.


The psychosomatic sensation, physiologic, and metabolic data all indicated that endurance exercise for up to 90 min for fit individuals is not limited by a short-term fast or enhanced by carbohydrate supplementation. These findings are of interest to persons who exercise to maintain and enhance health and are not concerned with elite performance.

Restricted access

Christopher C. Webster, Jeroen Swart, Timothy D. Noakes and James A. Smith

both tests were conducted after an overnight-fast. A possible explanation is that muscle glycogen concentrations may have been slightly higher following the most recent high-intensity training session with carbohydrate supplementation. It is also conceivable that the glycolytic pathway was upregulated

Restricted access

Lara A. Carlson, Samuel Headley, Jason DeBruin, Alex P. Tuckow, Alexander J. Koch and Robert W. Kenefick

This investigation sought to study changes in leukocyte subsets after an acute bout of resistance exercise (ARE) and to determine whether ingestion of carbohydrate (CHO) could attenuate those immune responses. Nine male track-and-field athletes (21.1 ± 1.4 yr, 177.2 ± 5.5 cm, 80.9 ± 9.7 kg, 8.7% ± 3.8% fat) and 10 male ice hockey athletes (21.0 ± 2.2 yr, 174.3 ± 6.2 cm, 79.6 ±11.1 kg, 13.9% ± 3.73% fat) participated in 2 different ARE protocols. Both experiments employed a counterbalanced double-blind research design, wherein participants consumed either a CHO (1 g/kg body weight) or placebo beverage before, during, and after a weight-lifting session. Serum cortisol decreased (p < .05) at 90 min into recovery compared with immediately postexercise. Plasma lactate, total leukocyte, neutrophil, and monocyte concentrations increased (p < .05) from baseline to immediately postexercise. Lymphocytes decreased significantly (p < .05) from baseline to 90 min postexercise. Lymphocytes were lower (p < .05) for the CHO condition than for placebo. The findings of this study indicate the following: ARE appears to evoke changes in immune cells similar to those previously reported during endurance exercise, and CHO ingestion attenuates lymphocytosis after ARE.

Restricted access

David R. Lamb, Ann C. Snyder and Thomas S. Baur

This study compared two high carbohydrate (CHO) diets in 14 male runners for effects on muscle glycogen deposition, endurance, and sensations of gastrointestinal discomfort. Muscle glycogen was measured in the vastus lateralis at rest and run time to exhaustion at 75 % VO2max was measured following 3-1/2 days on a 50% CHO diet. After 14 days the subjects consumed a 20% CHO diet and continued training to reduce glycogen. During the next 3-1/2 days, subjects ran less and consumed a 90% CHO diet emphasizing pasta and rice (Pasta, n=7) or lesser amounts of pasta and rice supplemented by a maltodextrin beverage (Supplement, n=7). Glycogen was again measured, followed by a second run to exhaustion. Compared to the 50% CHO diet, Pasta increased muscle glycogen by 27.1 ± 12.2 mmoles/kg muscle (M±SE; p < 0.05) and run time by 15.7±5.9 min; Supplement increased glycogen by 43.2 ± 13.5 mmoles/kg (p < 0.05) and run time by 29.0 ± 7.4 min (p < 0.05). Total glycogen concentrations and run times were not significantly different for Pasta versus Supplement. Subjects reported less gastrointestinal discomfort and greater overall preference for Supplement than for Pasta. Thus, glycogen loading can be accomplished at least as effectively and more comfortably by substituting a maltodextrin drink for some of the pasta and rice in a glycogen loading diet.

Restricted access

Nicolette C. Bishop, Michael Gleeson, Ceri W. Nicholas and Ajmol Ali

Ingesting carbohydrate (CHO) beverages during prolonged, continuous heavy exercise results in smaller changes in the plasma concentrations of several cytokines and attenuates a decline in neutrophil function. In contrast, ingesting CHO during prolonged intermittent exercise appears to have negligible influence on these responses, probably due to the overall moderate intensity of these intermittent exercise protocols. Therefore, we examined the effect of CHO ingestion on plasma interIeukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-stimuIated neutrophil degranulation responses to high-intensity intermittent running. Six trained male soccer players performed 2 exercise trials, 7 days apart, in a randomized, counterbalanced design. On each occasion, they completed six 15-min periods of intermittent running consisting of maximal sprinting interspersed with less intense periods of running and walking. Subjects consumed either CHO or artificially sweetened placebo(PLA) beverages immediately before and at 15-min intervals during the exercise. At 30 min post-exercise, CHO versus PLA was associated with a higher plasma glucose concentration (p< .01), a lower plasma cortisol and IL-6 concentration (p < .02), and fewer numbers of circulating neutrophils (p < .05). Following the exercise, LPS-stimulated elastase release per neutrophil fell 31 % below baseline values on the PLA trial (p = .06) compared with 11% on the CHO trial (p = .30). Plasma TNF-α concentration increased following the exercise (main effect of time, p < .001) but was not affected by CHO. These data indicate that CHO ingestion attenuates changes in plasma IL-6 concentration, neutrophil trafficking, and LPS-stimulated neutrophil degranulation in response to intermittent exercise that involves bouts of very high intensity exercise.

Restricted access

Sean R. Schumm, N. Travis Triplett, Jeffrey M. McBride and Charles L. Dumke

This investigation examined the anabolic-hormone response to carbohydrate (CHO) supplementation at rest and after resistance exercise. Nine recreationally trained men randomly underwent 4 testing conditions: rest with placebo (RPL), rest with CHO (RCHO), resistance exercise with placebo (EPL), and resistance exercise with CHO (ECHO). The resistance-exercise protocol was four sets of Smith machine squats with a 10-repetition-maximum load, with 90-s rests between sets. Participants then consumed either a placebo or CHO (24% CHO, 1.5 g/kg) drink. Blood was taken before exercise (Pre), immediately after testing (Post), and then 15 (15P), 30 (30P), and 60 (60P) min after drink ingestion. Blood was analyzed for cortisol, glucose, insulin, and total testosterone (TTST). Cortisol did not change significantly in any condition. Glucose concentrations increased significantly from Pre to 15P and 30P during RCHO and Pre to 15P, 30P, and 60P in ECHO (p ≤&.05). Insulin concentrations increased significantly from Pre to 15P, 30P, and 60P in the RCHO and ECHO conditions (p ≤&.05). There were no significant changes in TTST concentrations during RPL or RCHO. Both EPL and ECHO demonstrated a significant elevation in TTST concentrations from Pre to Post (p ≤&.05). During ECHO, TTST concentrations at 60P were significantly lower than Pre levels (p ≤&.05), but there were no significant treatment differences in TTST concentrations at any time point during the EPL and ECHO conditions. Ingesting CHO after resistance exercise resulted in decreased TTST concentrations during recovery, although the mechanism is unclear.

Restricted access

Kevin Allen Jacobs and W. Michael Sherman

Carbohydrate (CHO) is the body's most limited fuel and the most heavily metabolized during moderate-intensity exercise. For this reason it is recommended that endurance athletes consume a high-CHO diet (8-10 g CHO ⋅ kg body weight−1 ⋅ day−1) to enhance training and performance. A review of the literature supports the benefits of CHO supplementation on endurance performance. The benefits of chronic high-CHO diets on endurance performance are not as clear. Recent evidence suggests that a high-CHO diet may be necessary for optimal adaptations to training. However, the paucity of data in this area precludes any concrete conclusions. The practicality of high-CHO diets is not well understood. The available evidence would indicate that a high-CHO diet is the best dietary recommendation for endurance athletes.