Search Results

You are looking at 1 - 10 of 130 items for :

  • "cold-water immersion" x
  • Refine by Access: All Content x
Clear All
Restricted access

Wigand Poppendieck, Melissa Wegmann, Anne Hecksteden, Alexander Darup, Jan Schimpchen, Sabrina Skorski, Alexander Ferrauti, Michael Kellmann, Mark Pfeiffer, and Tim Meyer

Cold-water immersion (CWI) has emerged as a popular recovery intervention among athletes. While the actual mechanisms of cooling to support recovery are not understood in all mechanistic details, it has been suggested that a reduction in muscle temperature may lead to lesser extents of muscle

Restricted access

Francisco Tavares, Martyn Beaven, Júlia Teles, Dane Baker, Phil Healey, Tiaki B. Smith, and Matthew Driller

, it may decrease swelling and acute inflammation from muscle damage. 7 Furthermore, the use of cold-water immersion (CWI) contributes to a reduction in nerve conduction properties and to a decrease in muscle spasm and pain. 7 CWI in an acute rugby setting (<48-h postexercise) has been effective in

Restricted access

Connor A. Burton and Christine A. Lauber

decreases, heart rate decreases, and stroke volume increases. 4 Interventions using various forms of cold mediums (e.g., cold water immersion [CWI], 5 – 12 cooling vests, 5 – 7 cold fluid ingestion, 5 – 7 and cool misting 6 , 7 ) have proven to reduce thermal strain and fatigue for endurance exercise in

Restricted access

Jan Kodejška, Jiří Baláš, and Nick Draper

Cold water immersion (CWI) is included as a recovery protocol for many sports. 1 Positive effects of CWI have been observed after endurance exercise to failure such as for cycling, 2 running, 3 or rock climbing, 4 , 5 however, other research has not supported this finding. 1 Consequently

Restricted access

Jessica M. Stephens, Ken Sharpe, Christopher Gore, Joanna Miller, Gary J. Slater, Nathan Versey, Jeremiah Peiffer, Rob Duffield, Geoffrey M. Minett, David Crampton, Alan Dunne, Christopher D. Askew, and Shona L. Halson

Cold-water immersion (CWI) is a widely practiced recovery modality aiming to reduce fatigue and facilitate postexercise recovery. 1 It is thought that the combination of cold temperature and hydrostatic pressure promotes reductions in tissue temperatures and blood flow, facilitating subsequent

Restricted access

Jessica M. Stephens, Shona L. Halson, Joanna Miller, Gary J. Slater, Dale W. Chapman, and Christopher D. Askew

Cold-water immersion (CWI) is a popular recovery strategy routinely used by athletes to hasten the body’s return to its preexercise state. 1 Recently, the popularity of CWI in practical settings has led to increased research. 2 Studies to date have focused predominantly on the recovery of

Restricted access

Jesús Seco-Calvo, Juan Mielgo-Ayuso, César Calvo-Lobo, and Alfredo Córdova

agonist/antagonist* 70.6 (4.7) 64.9 (2.6) 64.0 (2.1) 73.5 (0.0) <0.001 .841 Note: Statistically significant differences are marked in bold. Abbreviations: CON, control group; CWI, cold-water immersion group; EADIR, extension, adduction, and internal rotation; FABDER, flexion, abduction, and external

Restricted access

Susan Y. Kwiecien, Malachy P. McHugh, Stuart Goodall, Kirsty M. Hicks, Angus M. Hunter, and Glyn Howatson

Cold-water immersion (CWI) is a popular intervention utilized to facilitate recovery and improve function in the days following strenuous exercise. Two comprehensive reviews on CWI indicate some effectiveness at reducing soreness but inconclusive effects on other measures of recovery. 1 , 2 As

Restricted access

Christina J. Lorete, Riley N. Fontaine, Lauren A. Welsch, and Johanna M. Hoch

Clinical Question:

Is there evidence to suggest continuous cold water immersion (CWI) as a postexercise recovery intervention is more effective at reducing perceived muscle fatigue or soreness as measured using a Visual Analog Scale (VAS) when compared with passive rest in physically active adults?

Summary of Key Findings:

A systematic search of the literature produced 124 studies, with two randomized controlled trials and two cross-over studies meeting the inclusion criteria.

Clinical Bottom Line:

There is inconsistent, limited-quality evidence to support that the use of CWI postexercise is more effective at reducing perceived muscle fatigue or soreness in physically active adults when compared with passive rest. The results of the included studies were inconsistent regarding the application of continuous CWI for 10–14 min to reduce perceived muscle fatigue and soreness when compared with passive rest. The good-quality evidence found no difference between conditions and the three limited-quality studies identified differences between the conditions.

Restricted access

Christos K. Argus, James R. Broatch, Aaron C. Petersen, Remco Polman, David J. Bishop, and Shona Halson

Context:

An athlete’s ability to recover quickly is important when there is limited time between training and competition. As such, recovery strategies are commonly used to expedite the recovery process.

Purpose:

To determine the effectiveness of both cold-water immersion (CWI) and contrast water therapy (CWT) compared with control on short-term recovery (<4 h) after a single full-body resistance-training session.

Methods:

Thirteen men (age 26 ± 5 y, weight 79 ± 7 kg, height 177 ± 5 cm) were assessed for perceptual (fatigue and soreness) and performance measures (maximal voluntary isometric contraction [MVC] of the knee extensors, weighted and unweighted countermovement jumps) before and immediately after the training session. Subjects then completed 1 of three 14-min recovery strategies (CWI, CWT, or passive sitting [CON]), with the perceptual and performance measures reassessed immediately, 2 h, and 4 h postrecovery.

Results:

Peak torque during MVC and jump performance were significantly decreased (P < .05) after the resistance-training session and remained depressed for at least 4 h postrecovery in all conditions. Neither CWI nor CWT had any effect on perceptual or performance measures over the 4-h recovery period.

Conclusions:

CWI and CWT did not improve short-term (<4-h) recovery after a conventional resistance-training session.