Search Results

You are looking at 1 - 4 of 4 items for :

  • "court-based sport" x
Clear All
Restricted access

Jordan L. Fox, Cody J. O’Grady and Aaron T. Scanlan

Purpose: To compare the concurrent validity of session-rating of perceived exertion (sRPE) workload determined face-to-face and via an online application in basketball players. Methods: Sixteen semiprofessional, male basketball players (21.8 [4.3] y, 191.2 [9.2] cm, 85.0 [15.7] kg) were monitored during all training sessions across the 2018 (8 players) and 2019 (11 players) seasons in a state-level Australian league. Workload was reported as accumulated PlayerLoad (PL), summated-heart-rate-zones (SHRZ) workload, and sRPE. During the 2018 season, rating of perceived exertion (RPE) was determined following each session via individualized face-to-face reporting. During the 2019 season, RPE was obtained following each session via a phone-based, online application. Repeated-measures correlations with 95% confidence intervals were used to determine the relationships between sRPE collected using each method and other workload measures (PL and SHRZ) as indicators of concurrent validity. Results: Although all correlations were significant (P < .05), sRPE obtained using face-to-face reporting demonstrated stronger relationships with PL (r = .69 [.07], large) and SHRZ (r = .74 [.06], very large) compared with the online application (r = .29 [.25], small [PL] and r = .34 [.22], moderate [SHRZ]). Conclusions: Concurrent validity of sRPE workload was stronger when players reported RPE in an individualized, face-to-face manner compared with using a phone-based online application. Given the weaker relationships with other workload measures, basketball practitioners should be cautious when using player training workloads predicated on RPE obtained via online applications.

Restricted access

Jordan L. Fox, Cody J. O’Grady and Aaron T. Scanlan

Purpose: To investigate the relationships between external and internal workloads using a comprehensive selection of variables during basketball training and games. Methods: Eight semiprofessional, male basketball players were monitored during training and games for an entire season. External workload was determined as PlayerLoad: total and high-intensity accelerations, decelerations, changes of direction, and jumps and total low-intensity, medium-intensity, high-intensity, and overall inertial movement analysis events. Internal workload was determined using the summated-heart-rate zones and session rating of perceived exertion models. The relationships between external and internal workload variables were separately calculated for training and games using repeated-measures correlations with 95% confidence intervals. Results: PlayerLoad was more strongly related to summated-heart-rate zones (r = .88 ± .03, very large [training]; r = .69 ± .09, large [games]) and session rating of perceived exertion (r = .74 ± .06, very large [training]; r = .53 ± .12, large [games]) than other external workload variables (P < .05). Correlations between total and high-intensity accelerations, decelerations, changes of direction, and jumps and total low-intensity, medium-intensity, high-intensity, and overall inertial movement analysis events and internal workloads were stronger during training (r = .44–.88) than during games (r = .15–.69). Conclusions: PlayerLoad and summated-heart-rate zones possess the strongest dose–response relationship among a comprehensive selection of external and internal workload variables in basketball, particularly during training sessions compared with games. Basketball practitioners may therefore be able to best anticipate player responses when prescribing training drills using these variables for optimal workload management across the season.

Restricted access

Aaron T. Scanlan, Robert Stanton, Charli Sargent, Cody O’Grady, Michele Lastella and Jordan L. Fox

Basketball is a court-based sport, where teams generally consist of 5 starting players who commence each game and 5 to 7 bench players who are substituted onto the court and typically play less time than starters. 1 Given that basketball is played in over 200 countries, many semiprofessional and

Restricted access

Paul G. Montgomery and Brendan D. Maloney

court-based sport, has had little exposure to and publication of game demands using wearable technology. 3 × 3 basketball is unique in that competitions are generally played outdoors, allowing a combined inertial sensor and GPS data to be accessed for investigation of game demands. Information published