Search Results

You are looking at 1 - 3 of 3 items for :

  • "crimp grip" x
Clear All
Restricted access

Andreas Schweizer and Robert Hudek

The aim was to investigate differences of the kinetics of the crimp and the slope grip used in rock climbing. Nine cadaver fingers were prepared and fixated with the proximal phalanx in a frame. The superficial (FDS) and deep (FDP) flexor tendons were loaded selectively and together with 40 N in the crimp grip (PIP joint flexed 90°/DIP joint hyperextended) and the slope grip position (<25° flexed/50° flexed respectively). Five different grip sizes were tested and the flexion force which was generated to the grip was measured. In the crimp grip the FDP generated more flexion force in small sized holds whereas the FDS generated more force in the larger holds. During the slope grip the FDP was more effective than the FDS. While both tendons were loaded, the flexion force was always greater during crimp grip compared with the slope grip. The FDP seems to be most important for very small holds using the crimp grip but also during slope grip holds whereas the FDS is more important for larger flat holds.

Restricted access

Roger Bourne, Mark Halaki, Benedicte Vanwanseele and Jillian Clarke

This study investigates the hypothesis that shallow edge lifting force in high-level rock climbers is more strongly related to fingertip soft tissue anatomy than to absolute strength or strength to body mass ratio. Fifteen experienced climbers performed repeated maximal single hand lifting exercises on rectangular sandstone edges of depth 2.8, 4.3, 5.8, 7.3, and 12.5 mm while standing on a force measurement platform. Fingertip soft tissue dimensions were assessed by ultrasound imaging. Shallow edge (2.8 and 4.3 mm) lifting force, in newtons or body mass normalized, was uncorrelated with deep edge (12.5 mm) lifting force (r < .1). There was a positive correlation (r = .65, p < .05) between lifting force in newtons at 2.8 mm edge depth and tip of bone to tip of finger pulp measurement (r < .37 at other edge depths). The results confirm the common perception that maximum lifting force on a deep edge (“strength”) does not predict maximum force production on very shallow edges. It is suggested that increased fingertip pulp dimension or plasticity may enable increased deformation of the fingertip, increasing the skin to rock contact area on very shallow edges, and thus increase the limit of force production. The study also confirmed previous assumptions of left/right force symmetry in climbers.

Restricted access

Isabelle Schöffl, Frank Einwag, Wolf Strecker, Friedrich Hennig and Volker Schöffl

Flexor tendon pulley ruptures are the most common injury in rock climbers. Therapeutic standards usually include a prolonged use of taping applied as a replacement for the lost pulley in a circular fashion at the base of the proximal phalanx. Our biomechanical considerations, however, suggest a new taping method, the H-tape. The purpose of the study is to evaluate whether this new taping method can effectively change the course of the flexor tendon and therefore reduce the tendon–bone distance. In order to compare the effects of different taping methods described in the literature with the newly developed taping method, we performed standardized ultrasound examinations of 8 subjects with singular A2 pulley rupture and multiple pulley ruptures of A2 and A3 pulleys and determined the respective tendon–bone distance for the different taping methods, versus without tape at a preset position on the proximal phalanx. In a second approach, we evaluated the effect of the new taping method on the strength of the injured finger using a force platform on 12 subjects with different pulley ruptures with injuries older than 1 year. The new taping method decreased the tendon–bone distance in the injured finger significantly by 16%, whereas the other taping methods did not. The strength development was significantly better with the new tape for the crimp grip position (+13%), but there was no significant improvement for the hanging position. We recommend taping with the newly presented taping technique after pulley rupture.