Search Results

You are looking at 1 - 10 of 77 items for :

Clear All
Restricted access

Ricardo J.S. Costa, Vera Camões-Costa, Rhiannon M.J. Snipe, David Dixon, Isabella Russo and Zoya Huschtscha

nutrition application. Considering that the nutritional composition of dairy milk meets the criteria for the general recovery nutrition guidelines and recommendation ( Thomas et al., 2016 ), it is not surprising that the consumption of dairy milk after exercise supports muscle glycogen resynthesis, muscle

Restricted access

Kimberly M. White, Stephanie J. Bauer, Kristopher K. Hartz and Monika Baldridge

Introduction:

Resistance training is an effective method to decrease body fat (BF) and increase fat-free mass (FFM) and fat oxidation (FO). Dairy foods containing calcium and vitamin D might enhance these benefits. This study investigated the combined effects of habitual yogurt consumption and resistance training on body composition and metabolism.

Methods:

Untrained women (N = 35) participated in an 8-wk resistance-training program. The yogurt group (Y) consumed 3 servings of yogurt containing vitamin D per day, and the control groups maintained their baseline lowdairy-calcium diet. Postexercise, Y consumed 1 of the 3 servings/d fat-free yogurt, the protein group consumed an isocaloric product without calcium or vitamin D, and the carbohydrate group consumed an isocaloric product without protein. Strength, body composition, fasted resting metabolic rate (RMR) and FO, and serum 25-hydroxyvitamin D were measured before and after training.

Results:

Calories (kcal · kg−1 · d−1) and protein (g · kg−1 · d−1) significantly increased from baseline for Y. FFM increased (main effect p = .002) and %BF decreased (main effect .02) for all groups with training, but Group × Time interactions were not observed. RMR and FO did not change with training for any group.

Conclusion:

Habitual consumption of yogurt during resistance training did not augment changes in body composition compared with a low-dairy diet. Y decreased %BF as a result of training, however, even with increased calorie consumption.

Restricted access

Adam U. Upshaw, Tiffany S. Wong, Arash Bandegan and Peter W.R. Lemon

Postexercise chocolate milk ingestion has been shown to enhance both glycogen resynthesis and subsequent exercise performance. To assess whether nondairy chocolate beverage ingestion post–glycogen-lowering exercise can enhance 20-km cycling time trial performance 4 hr later, eight healthy trained male cyclists (21.8 ± 2.3y, VO2max = 61.2 ± 1.4 ml·kg-1·min-1; M ± SD) completed a series of intense cycling intervals designed to lower muscle glycogen (Jentjens & Jeukendrup, 2003) followed by 4 hr of recovery and a subsequent 20-km cycling time trial. During the first 2 hr of recovery, participants ingested chocolate dairy milk (DAIRYCHOC), chocolate soy beverage (SOYCHOC), chocolate hemp beverage (HEMPCHOC), low-fat dairy milk (MILK), or a low-energy artificially sweetened, flavored beverage (PLACEBO) at 30-min intervals in a double-blind, counterbalanced repeated-measures design. All drinks, except the PLACEBO (247 kJ) were isoenergetic (2,107 kJ), and all chocolate-flavored drinks provided 1-g CHO·kg body mass-1·h-1. Fluid intake across treatments was equalized (2,262 ± 148 ml) by ingesting appropriate quantities of water based on drink intake. The CHO:PRO ratio was 4:1, 1.5:1, 4:1, and 6:1 for DAIRYCHOC, MILK, SOYCHOC, and HEMPCHOC, respectively. One-way analysis of variance with repeated measures showed time trial performance (DAIRYCHOC = 34.58 ± 2.5 min, SOYCHOC = 34.83 ± 2.2 min, HEMPCHOC = 34.88 ± 1.1 min, MILK = 34.47 ± 1.7 min) was enhanced similarly vs PLACEBO (37.85 ± 2.1) for all treatments (p = .019) These data suggest that postexercise macronutrient and total energy intake are more important for same-day 20-km cycling time trial performance after glycogen-lowering exercise than protein type or protein-to-carbohydrate ratio.

Restricted access

Kimberly M. White, Roseann M. Lyle, Michael G. Flynn, Dorothy Teegarden and Shawn S. Donkin

The purpose of this study was to test the effect of acute dairy calcium intake on exercise energy metabolism and endurance performance. Trained female runners completed two trials. Each trial consisted of a 90-min glycogen depletion run followed by a self-paced 10K time trial, conducted one hour after consumption of a high dairy (500 mg Ca+2) or low dairy (80 mg Ca+2) meal. During the 90-min run, blood samples and respiratory gases were collected. No treatment main effects of acute dairy intake were found for respiratory exchange ratio (RER), calculated fat oxidation, lactate, glycerol, or 10K time. Following this protocol, acute dairy calcium intake did not alter fat utilization or endurance performance in trained female runners.

Restricted access

Eric C. Haakonssen, Megan L. Ross, Louise E. Cato, Alisa Nana, Emma J. Knight, David G. Jenkins, David T. Martin and Louise M. Burke

Some athletes avoid dairy in the meal consumed before exercise due to fears about gastrointestinal discomfort. Regular exclusion of dairy foods may unnecessarily reduce intake of high quality proteins and calcium with possible implications for body composition and bone health. This study compared the effects of meals that included (Dairy) or excluded (Control) dairy foods on gastric comfort and subsequent cycling performance. Well-trained female cyclists (n = 32; mean ± SD; 24.3 ± 4.1 y; VO2peak 57.1 ± 4.9 ml/kg/min) completed two trials (randomized cross-over design) in which they consumed a meal (2 g/kg carbohydrate and 54 kJ/kg) 2 hr before a 90-min cycle session (80 min at 60% maximal aerobic power followed by a 10-min time trial; TT). The dairy meal contained 3 servings of dairy foods providing ~1350 mg calcium. Gut comfort and palatability were measured using questionnaires. Performance was measured as maximum mean power during the TT (MMP10min). There was no statistical or clinical evidence of an effect of meal type on MMP10min with a mean difference (Dairy – Control) of 4 W (95% CI [–2, 9]). There was no evidence of an association between pretrial gut comfort and meal type (p = .15) or between gut comfort delta scores and meal type postmeal (p = .31), preexercise (p = .17) or postexercise (p = .80). There was no statistical or clinical evidence of a difference in palatability between meal types. In summary, substantial amounts of dairy foods can be included in meals consumed before strenuous cycling without impairing either gut comfort or performance.

Restricted access

lean-Xavier Guinard, Kimberly Seador, John L. Beard and Peter L. Brown

This study was undertaken to determine whether high-level training alters food choice behavior with regard to meat and dairy products because of their high fat content. Twenty male collegiate swimmers were compared to 20 male sedentary students for dietary fat intake, nutrition knowledge, and liking of meat and dairy products. There was no significant difference between the two groups for restraint, energy intake, dietary fat intake, and energy derived from fat. Nutrition knowledge, energy derived from saturated fat, and cholesterol intake, however, were significantly higher in the athletes. The two groups did not differ in their hedonic ratings of flavor or in their overall degree of liking of the meat and dairy products, and the athletes actually liked the appearance and texture of the products significantly more than did the sedentary students. This study shows that the sensory appeal of fat-containing animal products is not affected in male swimmers by a high level of exercise.

Restricted access

Holly R. Wyatt, Bonnie T. Jortberg, Christine Babbel, Sara Garner, Fang Dong, Gary K. Grunwald and James O. Hill

Background:

This project addresses the need to identify feasible, effective weight-management programs that can be implemented within communities. The controversial role of dairy products in weight-management programs is also explored.

Methods:

The “Calcium Weighs-In” weight-loss program placed equal emphasis on diet and physical activity and was delivered within a community intervention to promote dairy consumption in Calcium, New York. One hundred ninety-nine adults in Calcium, NY, participated in the weight-loss program. Weight loss, increase in dairy intake, increase in steps, decrease in blood pressure, decrease in waist circumference, and decrease in body mass index (BMI) were examined.

Results:

The mean weight loss for 116 subjects who completed the program was 6.0 ± 4.2 kg (mean ± SD, P < .0001) with a percent weight change of 6.4% ± 4.2% (P < .0001). An increase of 3582 ± 4070 steps (P < .0001), as well as an increase of 0.8 ± 1.2 dairy servings (P < .0001) was seen. Higher average dairy consumption was associated with greater weight loss and a greater decrease in waist circumference.

Conclusion:

The results show that effective weight-management programs can be implemented within communities. The results are also consistent with recommendations to include low-fat dairy products and a physical activity component in weight-management programs.

Restricted access

Kate Lambourne, Richard Washburn, Jaehoon Lee, Jessica L. Betts, David Thomas, Bryan Smith, Cheryl Gibson, Debra Kay Sullivan and Joseph Donnelly

Fluid milk consumed in conjunction with resistance training (RT) provides additional protein and calcium, which may enhance the effect of RT on body composition. However, the literature on this topic is inconsistent with limited data in adolescents. Therefore, we examined the effects of a supervised RT program (6 mo, 3 d/wk, 7 exercises, 40–85% 1-repetition maximum) with daily milk supplementation (24 oz/day, one 16-oz dose immediately post-RT) on weight, fat mass (FM), and fat-free mass (FFM) assessed via dual-energy X-ray absorptiometry (baseline, 3 mo, 6 mo) in a sample of middle-school students who were randomly assigned to 1 of 3 supplement groups: milk, isocaloric carbohydrate (100% fruit juice), or water (control). Thirty-nine boys and 69 girls (mean age = 13.6 yr, mean BMI percentile = 85th) completed the study: milk n = 36, juice n = 34, water n = 38. The results showed no significant differences between groups for change in body weight (milk = 3.4 ± 3.7 kg, juice = 4.2 ± 3.1 kg, water = 2.3 ± 2.9 kg), FM (milk = 1.1 ± 2.8 kg, juice = 1.6 ± 2.5 kg, water = 0.4 ± 3.6 kg), or FFM (milk = 2.2 ± 1.9 kg, juice = 2.7 ± 1.9 kg, water = 1.7 ± 2.9 kg) over 6 mo. FFM accounted for a high proportion of the increased weight (milk = 62%, juice = 64%, water = 74%). These results from a sample of predominantly overweight adolescents do not support the hypothesis that RT with milk supplementation enhances changes in body composition compared with RT alone.

Restricted access

David Travis Thomas, Laurie Wideman and Cheryl A. Lovelady

Purpose:

To examine the effect of yogurt supplementation pre- and postexercise on changes in body composition in overweight women engaged in a resistance-training program.

Methods:

Participants (age = 36.8 ± 4.8 yr) with a body-mass index of 29.1±2.1 kg/m2 were randomized to yogurt supplement (YOG; n = 15) or isoenergetic sucrose beverage (CONT; n = 14) consumed before and after exercise for 16 wk. Participants were also instructed to reduce energy intake daily (–1,046 kJ) during the study. Body composition was assessed by dual-energy X-ray absorptiometry, waist circumference, and sagittal diameter. Strength was measured with 1-repetition maximum. Dietary recalls were obtained by a multipass approach using Nutrition Data System software. Insulin-like growth factor-1 and insulin-like growth-factor-binding protein-3 were measured with ELISA.

Results:

Significant weight losses of 2.6 ± 4.5 kg (YOG) and 1.2 ± 2.5 kg (CONT) were observed. Total lean weight increased significantly over time in both YOG (0.8 ± 1.2 kg) and CONT (1.1 ± 0.9 kg). Significant reductions in total fat (YOG = 3.4 ± 4.1 kg vs. CONT = 2.3 ± 2.4 kg) were observed over time. Waist circumference, sagittal diameter, and trunk fat decreased significantly over time without group differences. Both groups significantly decreased energy intake while maintaining protein intake. Strength significantly increased over time in both groups. No changes over time or between groups were observed in hormone levels.

Conclusions:

These data suggest that yogurt supplementation offered no added benefit for increasing lean mass when combined with resistance training and modest energy restriction.

Restricted access

Rebekah D. Alcock, Gregory C. Shaw, Nicolin Tee, Marijke Welvaert and Louise M. Burke

normal dietary and exercise practices. Accordingly, the aims of the current study were to determine the time course of urinary Hyp excretion over a 24-hr period, following the intake of 20 g of either collagen or dairy proteins, and a habitual diet to determine whether urinary Hyp is a suitable marker of