Search Results

You are looking at 1 - 10 of 112 items for :

  • "eccentric contraction" x
Clear All
Restricted access

Chariklia K. Deli, Ioannis G. Fatouros, Vassilis Paschalis, Kalliopi Georgakouli, Athanasios Zalavras, Alexandra Avloniti, Yiannis Koutedakis and Athanasios Z. Jamurtas

Purpose:

Research regarding exercise-induced muscle-damage mainly focuses on adults. The present study examined exercise-induced muscle-damage responses in adults compared with children.

Method:

Eleven healthy boys (10–12 y) and 15 healthy men (18–45 y) performed 5 sets of 15 maximal eccentric contractions of the knee extensors. Range of motion (ROM), delayed onset muscle soreness (DOMS) during squat and walking, and peak isometric, concentric and eccentric torque were assessed before, post, 24, 48, 72, and 96 hr postexercise. Creatine kinase (CK) activity was assessed before and 72 hr postexercise.

Results:

Eccentric exercise resulted in DOMS during squat that persisted for up to 96h in men, and 48 hr in boys (p < .05), and DOMS during walking that persisted for up to 72 hr in men, and 48 hr in boys (p < .01). The ROM was lower in both age groups 48 hr postexercise (p < .001). Isometric (p < .001), concentric (p < .01) and eccentric (p < .01) force decreased post, and up to 48 hr postexercise in men. Except for a reduction in isometric force immediately after exercise, no other changes occurred in boys’ isokinetic force. CK activity increased in men at 72 hr postexercise compared with pre exercise levels (p = .05).

Conclusion:

Our data provide further confirmation that children are less susceptible to exercise-induced muscle damage compared with adults.

Restricted access

Nicole D. Park, Robert D. Maresca, Kimberly I. McKibans, D. Reid Morgan, Timothy S. Allen and Gordon L. Warren

The study’s objective was to determine whether orally ingested caffeine could help overcome excitation-contraction-coupling failure, which has been suggested to explain part of the strength loss associated with eccentric-contraction-induced muscle injury. A sample of 13 college students (4 men and 9 women) was used in a double-blind, repeated-measures experimental design. Each participant performed 2 experimental trials, 1 with each leg, with each trial lasting 4 consecutive days. On a given day, each participant was randomly assigned to ingest a capsule containing 6 mg/kg of either caffeine or flour (placebo). On the day of and the first 2 days after a bout of 50 injurious eccentric contractions done by the knee extensors, the interpolated-twitch technique was used to assess electrically evoked strength, maximal voluntary isometric contraction (MVIC) strength, and percent muscle activation during MVIC both before and after capsule ingestion. These variables were also measured before and after capsule ingestion the day before the eccentric-contraction bout—when the muscle was uninjured. In injured muscle, caffeine had no effect on any variable. In uninjured muscle, caffeine also had no effect on electrically evoked strength but increased MVIC strength by 10.4% compared with placebo (p = .00002), and this was attributed to an increase in muscle activation (6.2%; p = .01). In conclusion, the data provide no evidence that caffeine ingestion can help overcome excitation-contraction-coupling failure, if it exists, in injured human muscle. The data do indicate that caffeine ingestion can increase MVIC strength and activation in uninjured muscle but not in injured muscle.

Restricted access

Timothy A. Butterfield and Lindsey K. Lepley

Restricted access

Hans H.C.M. Savelberg, Ingrid G.L. Van de Port and Paul J.B. Willems

By manipulating trunk angle in ergometer cycling, we studied the effect of body configuration on muscle recruitment and joint kinematics. Changing trunk angle affects the length of muscles that span the hip joint. It is hypothesized that this affects the recruitment of the muscles directly involved, and as a consequence of affected joint torque distributions, also influences the recruitment of more distal muscles and the kinematics of distal joints. It was found that changing the trunk from an upright position to approximately 20 deg forward or backward affected muscle activation patterns and kinematics in the entire lower limb. The knee joint was the only joint not affected by manipulation of the lengths of hip joint muscles. Changes in trunk angle affected ankle and hip joint kinematics and the orientation of the thigh. A similar pattern has been demonstrated for muscle activity: Both the muscles that span the hip joint and those acting on the ankle joint were affected with respect to timing and amplitude of EMG. Moreover, it was found that the association between muscle activity and muscle length was adapted to manipulation of trunk angle. In all three conditions, most of the muscles that were considered displayed some eccentric activity. The ratio of eccentric to concentric activity changed with trunk angle. The present study showed that trunk angle influences muscle recruitment and (inter)muscular dynamics in the entire limb. As this will have consequences for the efficiency of cycling, body configuration should be a factor in bicycle design.

Restricted access

Gerard Carmona, Emma Roca, Mario Guerrero, Roser Cussó, Alfredo Irurtia, Lexa Nescolarde, Daniel Brotons, Josep L. Bedini and Joan A. Cadefau

Objective:

To investigate changes after a mountain ultramarathon (MUM) in the serum concentration of fast (FM) and slow (SM) myosin isoforms, which are fiber-type-specific sarcomere proteins. The changes were compared against creatine kinase (CK), a widely used fiber-sarcolemma-damage biomarker, and cardiac troponin I (cTnI), a widely used cardiac biomarker.

Methods:

Observational comparison of response in a single group of 8 endurance-trained amateur athletes. Time-related changes in serum levels of CK, cTnI, SM, and FM from competitors were analyzed before, 1 h after the MUM, and 24 and 48 h after the start of the MUM by 1-way ANOVA for repeated measures or Friedman and Wilcoxon tests. Pearson correlation coefficient was employed to examine associations between variables.

Results:

While SM was significantly (P = .009) increased in serum 24 h after the beginning of the MUM, FM and cTnI did not change significantly. Serum CK activity peak was observed 1 h after the MUM (P = .002). Moreover, serum peaks of CK and SM were highly correlated (r = .884, P = .004).

Conclusions:

Since there is evidence of muscle damage after prolonged mountain running, the increase in SM serum concentration after a MUM could be indirect evidence of slow- (type I) fiber-specific sarcomere disruptions.

Restricted access

Kevin McCurdy and John Walker

. Statistical Analyses Bartlett test for equal variances and the Shapiro–Wilk test for normality were used to determine whether the EMG measures met the basic assumptions for an analysis of variance. For both concentric and eccentric contractions, all of the EMG measures at the proximal, distal, medial, and

Restricted access

Nicola Giovanelli, Lea Biasutti, Desy Salvadego, Hailu K. Alemayehu, Bruno Grassi and Stefano Lazzer

uphill and downhill sections. 1 Whereas uphill sections stress to a greater extent aerobic metabolism, in downhill sections, as a consequence of the repeated and forceful eccentric contractions, muscle damage and inflammation responses ensue. 2 In the past few years, several physiological aspects of

Restricted access

Mark D. Grabiner and Tammy M. Owings

For this study it was hypothesized that when participants intended to perform a maximum voluntary concentric (or eccentric) contraction but had an eccentric (or concentric) contraction imposed upon them, the initial EMG measured during the isometric phase preceding the onset of the dynamometer motion would reflect the intended contraction condition. The surface EMG of the vastus lateralis muscle was measured in 24 participants performing isokinetic concentric and eccentric maximum voluntary knee extensor contractions. The contractions were initiated from rest and from the same knee flexion angle and required the same level of external force to trigger the onset of dynamometer motion. Vastus lateralis EMG were quantified during the isometric phase preceding the onset of the dynamometer motion. When participants intended to perform a concentric contraction but had an eccentric contraction imposed upon them, the initial EMG resembled that of a concentric contraction. When they intended to perform an eccentric contraction but had a concentric contraction imposed upon them, the initial EMG resembled that of an eccentric contraction. Overall, the difference between concentric and eccentric contractions observed during the period of the initial muscle activation implies that descending signals include information that distinguishes between eccentric and concentric contractions.

Restricted access

Stephanie E. Forrester and Matthew T.G. Pain

This study aimed to identify areas of reduced surface EMG amplitude and changed frequency across the phase space of a maximal dynamic knee extension task. The hypotheses were that (1) amplitude would be lower for eccentric contractions compared with concentric contractions and unaffected by fiber length and (2) mean frequency would also be lower for eccentric contractions and unaffected by fiber length. Joint torque and EMG signals from the vasti and rectus femoris were recorded for eight athletic subjects performing maximum knee extensions at 13 preset crank velocities spanning ±300°⋅s−1. The instantaneous amplitude and mean frequency were calculated using the continuous wavelet transform time–frequency method, and the fiber dynamics were determined using a muscle model of the knee extensions. The results indicated that (1) only for the rectus femoris were amplitudes significantly lower for eccentric contractions (p = .019) and, for the vasti, amplitudes during eccentric contractions were less than maximal but this was also the case for concentric contractions due to a significant reduction in amplitude toward knee extension (p = .023), and (2) mean frequency increased significantly with decreasing fiber length for all knee extensors and contraction velocities (p = .029). Using time–frequency processing of the EMG signals and a muscle model allowed the simultaneous assessment of fiber length, velocity, and EMG.

Restricted access

Tibor Hortobágyi, Kevin Scott, Jean Lambert, George Hamilton and James Tracy

Cross-education enhances the performance of muscles not directly involved in the chronic conditioning of the muscles in a remote limb. Substantial cross-education occurs after training with eccentric contractions or with contractions evoked by electromyostimulation (EMS). Since during EMS and eccentric contractions, skin and muscle afferents are activated that have excitatory effects on contralateral homologous muscles, it was hypothesized that exercise training with stimulated vs. voluntary eccentric contractions would lead to greater cross-education. Thirty-two women were randomly assigned to a voluntary (Vol), an EMS, or a remote EMS (rEMS) exercise group and performed 840 voluntary or stimulated eccentric contractions over 6 weeks. All subjects, including nonexercising controls (Con), were tested pre- and posttraining for maximal voluntary and stimulated isometric and eccentric quadriceps strength. Ipsilateral voluntary and stimulated forces increased in all groups. Changes in EMG activity paralleled those in voluntary force in each limb. No changes occurred in grip strength. The greater contra- and ipsilateral strength gains after EMS training were most likely related to an additive effect of EMS and muscle lengthening.