Search Results

You are looking at 1 - 10 of 80 items for :

  • "endurance capacity" x
Clear All
Restricted access

Espen Tønnessen, Vegard Rasdal, Ida S. Svendsen, Thomas A. Haugen, Erlend Hem and Øyvind Sandbakk

Performing at an elite level in Nordic combined (NC) requires both the explosiveness required for ski jumping performance and the endurance capacity required for cross-country skiing.

Purpose:

To describe the characteristics of world-class NC athletes’ training and determine how endurance and non–endurance (ie, strength, power, and ski jumping) training is periodized.

Methods:

Annual training characteristics and the periodization of endurance and non–endurance training were determined by analyzing the training diaries of 6 world-class NC athletes.

Results:

Of 846 ± 72 annual training hours, 540 ± 37 h were endurance training, with 88.6% being low-, 5.9% moderate-, and 5.5% high-intensity training. While training frequency remained relatively constant, the total training volume was reduced from the general preparatory to the competition phase, primarily due to less low- and moderate-intensity training (P < .05). A total of 236 ± 55 h/y were spent as non–endurance training, including 211 ± 44 h of power and ski-jump-specific training (908 ± 165 ski jumps and ski-jump imitations). The proportion of non–endurance training increased significantly toward the competition phase (P < .05).

Conclusion:

World-class NC athletes reduce the volume of low- and moderate-intensity endurance training toward the competition phase, followed by an increase in the relative contribution of power and ski-jump training. These data provide novel insight on how successful athletes execute their training and may facilitate more-precise coaching of future athletes in this sport. In addition, this information is of high relevance for the training organization of other sports that require optimization of 2 fundamentally different physical capacities.

Restricted access

Joanne L. Fallowfield, Clyde Williams and Rabindar Singh

Recovery from prolonged exercise involves both rehydration and replenishment of endogenous carbohydrate stores. The present study examined the influence of ingesting a carbohydrate-electrolyte (CE) solution following prolonged running, on exercise capacity 4 hr later. Twelve men and 4 women were divided into two matched groups, which were randomly assigned to either a control (P) or a carbohydrate (CHO) condition. Both groups ran at 70% of maximal oxygen uptake (VO2max) on a level treadmill for 90 min or until volitional fatigue (R,), and they ran at the same %VO2max to exhaustion 4 hr later to assess endurance capacity (R2). The CHO group ingested a 6.9% CE solution providing 1.0 g CHO · kg body weight−1 immediately post-R, and again 2 hr later. The P group ingested equal volumes of a placebo solution. Run times (mean ± SEM) for Rj did not differ between the groups (P 86.3 ± 3.8 min; CHO 87.5 ± 2.5 min). The CHO group ran 22.2 (±3.5) min longer than the P group during R2 (P 39.8 ± 6.1 min; CHO 62.0 ± 6.2 min) (p < .05). Thus, ingesting a 6.9% carbohydrate-electrolyte beverage following prolonged, constant-pace running improves endurance capacity 4 hr later.

Restricted access

Asok Kumar Ghosh, A. Abdul Rahaman and Rabindarjeet Singh

The purpose of the study was to investigate whether a combination of sago and soy protein ingested during moderate-intensity cycling exercise can improve subsequent high-intensity endurance capacity compared with a carbohydrate in the form of sago and with a placebo. The participants were 8 male recreational cyclists with age, weight, and VO2max of 21.5 ± 1.1 yr, 63.3 ± 2.4 kg, and 39.9 ± 1.1 ml · kg−1 · min−1, respectively. The design of the study was a randomized, double-blind placebo-controlled crossover comprising 60 min of exercise on a cycle ergometer at 60% VO2max followed by a time-to-exhaustion ride at 90% VO2max. The sago feeding provided 60 g of carbohydrate, and the sago-soy combination provided 52.5 g of carbohydrate and 15 g of protein, both at 20-min intervals during exercise. Times to exhaustion for the placebo, sago, and sago-soy supplementations were 4.09 ± 1.28, 5.49 ± 1.20, and 7.53 ± 2.02 min, respectively. Sago-soy supplementation increased endurance by 84% (44–140%; p < .001) and by 37% (15–63%; p < .05) relative to placebo and sago, respectively. The plasma insulin response was elevated above that with placebo during sago and sago-soy supplementations. The authors conclude that a combination of sago and soy protein can delay fatigue during high-intensity cycling.

Restricted access

Leyre Gravina, Frankie F. Brown, Lee Alexander, James Dick, Gordon Bell, Oliver C. Witard and Stuart D.R. Galloway

Omega-3 fatty acid (n-3 FA) supplementation could promote adaptation to soccer-specific training. We examined the impact of a 4-week period of n-3 FA supplementation during training on adaptations in 1RM knee extensor strength, 20-m sprint speed, vertical jump power, and anaerobic endurance capacity (Yo-Yo test) in competitive soccer players. Twenty six soccer players were randomly assigned to one of two groups: n-3 FA supplementation (n-3 FA; n = 13) or placebo (n = 13). Both groups performed two experimental trial days. Assessments of physical function and respiratory function were conducted pre (PRE) and post (POST) supplementation. Training session intensity, competitive games and nutritional intake were monitored during the 4-week period. No differences were observed in respiratory measurements (FEV1, FVC) between groups. No main effect of treatment was observed for 1RM knee extensor strength, explosive leg power, or 20 m sprint performance, but strength improved as a result of the training period in both groups (p < .05). Yo-Yo test distance improved with training in the n-3 FA group only (p < .01). The mean difference (95% CI) in Yo-Yo test distance completed from PRE to POST was 203 (66–340) m for n-3 FA, and 62 (-94–217) m for placebo, with a moderate effect size (Cohen’s d of 0.52). We conclude that 4 weeks of n-3 FA supplementation does not improve strength, power or speed assessments in competitive soccer players. However, the increase in anaerobic endurance capacity evident only in the n-3 FA treatment group suggests an interaction that requires further study.

Restricted access

Emma Stevenson, Clyde Williams, Gareth McComb and Christopher Oram

This study examined the effects of the glycemic index (GI) of post-exercise carbohydrate (CHO) intake on endurance capacity the following day. Nine active males participated in 2 trials. On day 1, subjects ran for 90 min at 70% VO2max (R1). Thereafter, they were supplied with either a high GI (HGI) or low GI (LGI) CHO diet which provided 8 g CHO/kg body mass (BM). On day 2, after an overnight fast, subjects ran to exhaustion at 70% VO2max (R2). Time to exhaustion during R2 was longer in the LGI trial (108.9 ± 7.4 min) than in the HGI trial (96.9 ± 4.8 min) (P < 0.05). Fat oxidation rates and free fatty acid concentrations were higher in the LGI trial than the HGI trial (P < 0.05). The results suggest that the increased endurance capacity was largely a consequence of the increased fat oxidation following the LGI recovery diet.

Restricted access

Joanne L. Fallowfield and Clyde Williams

The present study examined the influence of ingesting 3.0 g CHO · kg1 body mass ⋅ 2 hr1 after prolonged exercise on recovery and running capacity 4 hr later. Nine men and 8 women completed two trials in a counterbalanced design. Each trial consisted of a 90-min run on a level treadmill at 70% VO2max (Rt) followed by 4 hr recovery (REC) and a further exhaustive run at 70% VO2max (R2). During REC, subjects ingested either two feedings of a 6.9% glucose-polymer (GP) solution (D trial) or two feedings of a 19.3% GP solution (C trial). There were no differences in mean (±SE) R2 run times between the C and D trials or between the male and female subjects. More stable blood glucose concentrations were maintained during REC in the C trial, such that blood glucose was elevated in the C trial in comparison with the D trial after 210 min of REC. It was concluded that increasing postexercise carbohydrate intake from 1.0 to 3.0 g CHO ⋅ Kg1 body mass 2 hr1 does not improve endurance capacity 1 hr later.

Restricted access

Amy C. Brown, Holden SH. MacRae and Nathan S. Turner

The purpose of this study was to determine whether ingestion of a multinutrient supplement containing 3 tricarboxylic-acid-cycle intermediates (TCAIs; pyridoxine-alpha-ketoglutarate, malate, and succinate) and other substances potentially supporting the TCA cycle (such as aspartate and glutamate) would improve cyclists’ time to exhaustion during a submaximal endurance-exercise test (~ 70% to 75% VO2peak) and rate of recovery. Seven well-trained male cyclists (VO2max 67.4 2.1 mL · kg–1 · min–1, 28.6 ± 2.4 y) participated in a randomized, double-blind crossover study for 7 wk. Each took either the treatment or a placebo 30 min before and after their normal training sessions for 3 wk and before submaximal exercise tests. There were no significant differences between the TCAI group (KI) and placebo group (P) in time to exhaustion during cycling (KI = 105 ± 18, P = 113 ± 11 min); respiratory-exchange ratio at 20-min intervals; blood lactate and plasma glucose before, after, and at 30-min intervals during exercise; perceived exertion at 20-min intervals during exercise; or time to fatigue after the 30-min recovery (KI = 16.1 ± 3.2, P = 15 ± 2 min). Taking a dietary sport supplement containing several TCAIs and supporting substances for 3 wk does not improve cycling performance at 75% VO2peak or speed recovery from previously fatiguing exercise.

Restricted access

Carlos Augusto Kalva-Filho, Argyris Toubekis, Alessandro Moura Zagatto, Adelino Sanchez Ramos da Silva, João Paulo Loures, Eduardo Zapaterra Campos and Marcelo Papoti

anaerobic threshold are less tolerable and characterized by increases in [La − ], which indicates that anaerobic metabolism is required to supply the energy demands ( 2 , 8 ). These physiological characteristics demonstrate that anaerobic threshold can be used to evaluate the endurance capacity of athletes

Restricted access

J. Mark Davis, Catherine J. Carlstedt, Stephen Chen, Martin D. Carmichael and E. Angela Murphy

Quercetin, a natural polyphenolic flavonoid substance present in a variety of food plants, has been shown in vitro and in animal studies to have widespread health and performance benefits resulting from a combination of biological properties, including antioxidant and anti-inflammatory activity, as well as the ability to increase mitochondrial biogenesis. Little is known about these effects in humans, however, especially with respect to exercise performance. The authors determined whether quercetin ingestion would enhance maximal aerobic capacity and delay fatigue during prolonged exercise in healthy but untrained participants. Twelve volunteers were randomly assigned to 1 of 2 treatments: (a) 500 mg of quercetin twice daily dissolved in vitamin-enriched Tang or (b) a nondistinguishable placebo (Tang). Baseline VO2max and bike-ride times to fatigue were established. Treatments were administered for a period of 7 days using a randomized, double-blind, placebo-controlled, crossover study design. After treatment both VO2max and ride time to fatigue were determined. Seven days of quercetin feedings were associated with a modest increase in VO2max (3.9% vs. placebo; p < .05) along with a substantial (13.2%) increase in ride time to fatigue (p < .05). These data suggest that as little as 7 days of quercetin supplementation can increase endurance without exercise training in untrained participants. These benefits of quercetin may have important implications for enhancement of athletic and military performance. This apparent increase in fitness without exercise training may have implications beyond that of performance enhancement to health promotion and disease prevention.

Restricted access

Jesse Fleming, Matthew J. Sharman, Neva G. Avery, Dawn M. Love, Ana L. Gómez, Timothy P. Scheett, William J. Kraemer and Jeff S. Volek

The effects of adaptation to a high-fat diet on endurance performance are equivocal, and there is little data regarding the effects on high-intensity exercise performance. This study examined the effects of a high-fat/moderate protein diet on submaximal, maximal, and supramaximal performance. Twenty non-highly trained men were assigned to either a high-fat/moderate-protein (HFMP; 61% fat) diet (n = 12) or a control (C; 25% fat) group (n = 8). A maximal oxygen consumption test, two 30-s Wingate anaerobic tests, and a 45-min timed ride were performed before and after 6 weeks of diet and training. Body mass decreased significantly (–2.2 kg; p ≤ .05) in HFMP subjects. Maximal oxygen consumption significantly decreased in the HFMP group (3.5 ± 0.14 to 3.27 ± 0.09 L · min−1) but was unaffected when corrected for body mass. Perceived exertion was significantly higher during this test in the HFMP group. Main time effects indicated that peak and mean power decreased significantly during bout 1 of the Wingate sprints in the HFMP (–10 and –20%, respectively) group but not the C (–8 and –16%, respectively) group. Only peak power was lower during bout 1 in the HFMP group when corrected for body mass. Despite significantly reduced RER values in the HFMP group during the 45-min cycling bout, work output was significantly decreased (–18%). Adaptation to a 6-week HFMP diet in non-highly trained men resulted in increased fat oxidation during exercise and small decrements in peak power output and endurance performance. These deleterious effects on exercise performance may be accounted for in part by a reduction in body mass and/or increased ratings of perceived exertion.