Search Results

You are looking at 1 - 10 of 177 items for :

  • "endurance capacity" x
  • Refine by Access: All Content x
Clear All
Restricted access

Reduced Endurance Capacity and Suboptimal Energy Availability in Top-Level Female Cyclists

Gabriel Barreto, Luana Farias de Oliveira, Tiemi Saito, Rafael Klosterhoff, Pedro Perim, Eimear Dolan, Rosa Maria R. Pereira, Patrícia Campos-Ferraz, Fernanda R. Lima, and Bryan Saunders

a complex sport with large variability in training and competition volume, considerable international travel, risk of falls and injury, and fluctuating nutritional demands that require careful consideration to support and optimize health and performance throughout a season. Compromised endurance

Restricted access

Concurrent Development of Endurance Capacity and Explosiveness: Training Characteristics of World-Class Nordic Combined Athletes

Espen Tønnessen, Vegard Rasdal, Ida S. Svendsen, Thomas A. Haugen, Erlend Hem, and Øyvind Sandbakk

Performing at an elite level in Nordic combined (NC) requires both the explosiveness required for ski jumping performance and the endurance capacity required for cross-country skiing.

Purpose:

To describe the characteristics of world-class NC athletes’ training and determine how endurance and non–endurance (ie, strength, power, and ski jumping) training is periodized.

Methods:

Annual training characteristics and the periodization of endurance and non–endurance training were determined by analyzing the training diaries of 6 world-class NC athletes.

Results:

Of 846 ± 72 annual training hours, 540 ± 37 h were endurance training, with 88.6% being low-, 5.9% moderate-, and 5.5% high-intensity training. While training frequency remained relatively constant, the total training volume was reduced from the general preparatory to the competition phase, primarily due to less low- and moderate-intensity training (P < .05). A total of 236 ± 55 h/y were spent as non–endurance training, including 211 ± 44 h of power and ski-jump-specific training (908 ± 165 ski jumps and ski-jump imitations). The proportion of non–endurance training increased significantly toward the competition phase (P < .05).

Conclusion:

World-class NC athletes reduce the volume of low- and moderate-intensity endurance training toward the competition phase, followed by an increase in the relative contribution of power and ski-jump training. These data provide novel insight on how successful athletes execute their training and may facilitate more-precise coaching of future athletes in this sport. In addition, this information is of high relevance for the training organization of other sports that require optimization of 2 fundamentally different physical capacities.

Restricted access

The Influence of Ingesting a Carbohydrate-Electrolyte Beverage during 4 Hours of Recovery on Subsequent Endurance Capacity

Joanne L. Fallowfield, Clyde Williams, and Rabindar Singh

Recovery from prolonged exercise involves both rehydration and replenishment of endogenous carbohydrate stores. The present study examined the influence of ingesting a carbohydrate-electrolyte (CE) solution following prolonged running, on exercise capacity 4 hr later. Twelve men and 4 women were divided into two matched groups, which were randomly assigned to either a control (P) or a carbohydrate (CHO) condition. Both groups ran at 70% of maximal oxygen uptake ( VO 2 max ) on a level treadmill for 90 min or until volitional fatigue (R,), and they ran at the same % VO 2 max to exhaustion 4 hr later to assess endurance capacity ( R 2 ). The CHO group ingested a 6.9% CE solution providing 1.0 g CHO · kg body weight−1 immediately post-R, and again 2 hr later. The P group ingested equal volumes of a placebo solution. Run times (mean ± SEM) for Rj did not differ between the groups (P 86.3 ± 3.8 min; CHO 87.5 ± 2.5 min). The CHO group ran 22.2 (±3.5) min longer than the P group during R 2 (P 39.8 ± 6.1 min; CHO 62.0 ± 6.2 min) (p < .05). Thus, ingesting a 6.9% carbohydrate-electrolyte beverage following prolonged, constant-pace running improves endurance capacity 4 hr later.

Restricted access

Improved Recovery from Prolonged Exercise Following the Consumption of Low Glycemic Index Carbohydrate Meals

Emma Stevenson, Clyde Williams, Gareth McComb, and Christopher Oram

This study examined the effects of the glycemic index (GI) of post-exercise carbohydrate (CHO) intake on endurance capacity the following day. Nine active males participated in 2 trials. On day 1, subjects ran for 90 min at 70% VO2max (R1). Thereafter, they were supplied with either a high GI (HGI) or low GI (LGI) CHO diet which provided 8 g CHO/kg body mass (BM). On day 2, after an overnight fast, subjects ran to exhaustion at 70% VO2max (R2). Time to exhaustion during R2 was longer in the LGI trial (108.9 ± 7.4 min) than in the HGI trial (96.9 ± 4.8 min) (P < 0.05). Fat oxidation rates and free fatty acid concentrations were higher in the LGI trial than the HGI trial (P < 0.05). The results suggest that the increased endurance capacity was largely a consequence of the increased fat oxidation following the LGI recovery diet.

Restricted access

Combination of Sago and Soy-Protein Supplementation During Endurance Cycling Exercise and Subsequent High-Intensity Endurance Capacity

Asok Kumar Ghosh, A. Abdul Rahaman, and Rabindarjeet Singh

The purpose of the study was to investigate whether a combination of sago and soy protein ingested during moderate-intensity cycling exercise can improve subsequent high-intensity endurance capacity compared with a carbohydrate in the form of sago and with a placebo. The participants were 8 male recreational cyclists with age, weight, and VO2max of 21.5 ± 1.1 yr, 63.3 ± 2.4 kg, and 39.9 ± 1.1 ml · kg−1 · min−1, respectively. The design of the study was a randomized, double-blind placebo-controlled crossover comprising 60 min of exercise on a cycle ergometer at 60% VO2max followed by a time-to-exhaustion ride at 90% VO2max. The sago feeding provided 60 g of carbohydrate, and the sago-soy combination provided 52.5 g of carbohydrate and 15 g of protein, both at 20-min intervals during exercise. Times to exhaustion for the placebo, sago, and sago-soy supplementations were 4.09 ± 1.28, 5.49 ± 1.20, and 7.53 ± 2.02 min, respectively. Sago-soy supplementation increased endurance by 84% (44–140%; p < .001) and by 37% (15–63%; p < .05) relative to placebo and sago, respectively. The plasma insulin response was elevated above that with placebo during sago and sago-soy supplementations. The authors conclude that a combination of sago and soy protein can delay fatigue during high-intensity cycling.

Open access

Addition of Fructose to a Carbohydrate-Rich Breakfast Improves Cycling Endurance Capacity in Trained Cyclists

Tim Podlogar, Simon Cirnski, Špela Bokal, Nina Verdel, and Javier T. Gonzalez

of a higher CHO availability. At a similar CHO oxidation rate, higher CHO availability will delay the depletion of CHO stores and thereby extend endurance capacity. Indeed, the current study did demonstrate an increased amount of total CHO oxidized. Based on this, it appears that substituting some

Restricted access

The Influence of a High Carbohydrate Intake during Recovery from Prolonged, Constant-Pace Running

Joanne L. Fallowfield and Clyde Williams

The present study examined the influence of ingesting 3.0 g CHO · kg 1 body mass ⋅ 2  hr 1 after prolonged exercise on recovery and running capacity 4 hr later. Nine men and 8 women completed two trials in a counterbalanced design. Each trial consisted of a 90-min run on a level treadmill at 70% VO 2 max ( R t ) followed by 4 hr recovery (REC) and a further exhaustive run at 70% VO 2 max (R2). During REC, subjects ingested either two feedings of a 6.9% glucose-polymer (GP) solution (D trial) or two feedings of a 19.3% GP solution (C trial). There were no differences in mean (±SE) R 2 run times between the C and D trials or between the male and female subjects. More stable blood glucose concentrations were maintained during REC in the C trial, such that blood glucose was elevated in the C trial in comparison with the D trial after 210 min of REC. It was concluded that increasing postexercise carbohydrate intake from 1.0 to 3.0 g CHO ⋅ Kg 1 body mass 2  hr 1 does not improve endurance capacity 1 hr later.

Restricted access

n-3 Fatty Acid Supplementation During 4 Weeks of Training Leads to Improved Anaerobic Endurance Capacity, but not Maximal Strength, Speed, or Power in Soccer Players

Leyre Gravina, Frankie F. Brown, Lee Alexander, James Dick, Gordon Bell, Oliver C. Witard, and Stuart D.R. Galloway

Omega-3 fatty acid (n-3 FA) supplementation could promote adaptation to soccer-specific training. We examined the impact of a 4-week period of n-3 FA supplementation during training on adaptations in 1RM knee extensor strength, 20-m sprint speed, vertical jump power, and anaerobic endurance capacity (Yo-Yo test) in competitive soccer players. Twenty six soccer players were randomly assigned to one of two groups: n-3 FA supplementation (n-3 FA; n = 13) or placebo (n = 13). Both groups performed two experimental trial days. Assessments of physical function and respiratory function were conducted pre (PRE) and post (POST) supplementation. Training session intensity, competitive games and nutritional intake were monitored during the 4-week period. No differences were observed in respiratory measurements (FEV1, FVC) between groups. No main effect of treatment was observed for 1RM knee extensor strength, explosive leg power, or 20 m sprint performance, but strength improved as a result of the training period in both groups (p < .05). Yo-Yo test distance improved with training in the n-3 FA group only (p < .01). The mean difference (95% CI) in Yo-Yo test distance completed from PRE to POST was 203 (66–340) m for n-3 FA, and 62 (-94–217) m for placebo, with a moderate effect size (Cohen’s d of 0.52). We conclude that 4 weeks of n-3 FA supplementation does not improve strength, power or speed assessments in competitive soccer players. However, the increase in anaerobic endurance capacity evident only in the n-3 FA treatment group suggests an interaction that requires further study.

Restricted access

Reliability and Validity of Tethered Swimming Lactate Minimum Test and Their Relationship With Performance in Young Swimmers

Carlos Augusto Kalva-Filho, Argyris Toubekis, Alessandro Moura Zagatto, Adelino Sanchez Ramos da Silva, João Paulo Loures, Eduardo Zapaterra Campos, and Marcelo Papoti

anaerobic threshold are less tolerable and characterized by increases in [La − ], which indicates that anaerobic metabolism is required to supply the energy demands ( 2 , 8 ). These physiological characteristics demonstrate that anaerobic threshold can be used to evaluate the endurance capacity of athletes

Restricted access

Tricarboxylic-Acid-Cycle Intermediates and Cycle Endurance Capacity

Amy C. Brown, Holden SH. MacRae, and Nathan S. Turner

The purpose of this study was to determine whether ingestion of a multinutrient supplement containing 3 tricarboxylic-acid-cycle intermediates (TCAIs; pyridoxine-alpha-ketoglutarate, malate, and succinate) and other substances potentially supporting the TCA cycle (such as aspartate and glutamate) would improve cyclists’ time to exhaustion during a submaximal endurance-exercise test (~ 70% to 75% VO2peak) and rate of recovery. Seven well-trained male cyclists (VO2max 67.4 2.1 mL · kg–1 · min–1, 28.6 ± 2.4 y) participated in a randomized, double-blind crossover study for 7 wk. Each took either the treatment or a placebo 30 min before and after their normal training sessions for 3 wk and before submaximal exercise tests. There were no significant differences between the TCAI group (KI) and placebo group (P) in time to exhaustion during cycling (KI = 105 ± 18, P = 113 ± 11 min); respiratory-exchange ratio at 20-min intervals; blood lactate and plasma glucose before, after, and at 30-min intervals during exercise; perceived exertion at 20-min intervals during exercise; or time to fatigue after the 30-min recovery (KI = 16.1 ± 3.2, P = 15 ± 2 min). Taking a dietary sport supplement containing several TCAIs and supporting substances for 3 wk does not improve cycling performance at 75% VO2peak or speed recovery from previously fatiguing exercise.