Search Results

You are looking at 1 - 10 of 47 items for :

  • "energy costs" x
Clear All
Restricted access

Scott A. Conger and David R. Bassett Jr.

The purpose of this study was to develop a compendium of wheelchair-related physical activities. To accomplish this, we conducted a systematic review of the published energy costs of activities performed by individuals who use wheelchairs. A total of 266 studies were identified by a literature search using relevant keywords. Inclusion criteria were studies utilizing individuals who routinely use a manual wheelchair, indirect calorimetry as the criterion measurement, energy expenditure expressed as METs or VO2, and physical activities typical of wheelchair users. Eleven studies met the inclusion criteria. A total of 63 different wheelchair activities were identified with energy expenditure values ranging from 0.8 to 12.5 kcal·kg-1·hr-1. The energy requirements for some activities differed between individuals who use wheelchairs and those who do not. The compendium of wheelchair-related activities can be used to enhance scoring of physical activity surveys and to promote the benefits of activity in this population.

Restricted access

Elizabeth J. Protas and Sandrine Tissier

The purpose of this study was to pilot test a function-focused exercise intervention consisting of strength and gait-speed training in elders with reduced walking speed, decreased walking endurance, and functional impairment. Twelve participants, 77.2 years old (± 7.34), whose usual gait speed was <0.85 m/s, with walking endurance of <305 m in 5 min, and who were functionally impaired participated in a moderate-intensity exercise intervention. The training occurred 3 times per week, 75 min per session, for 3 months and combined 4 weeks of gait-speed training, walking exercise, and functional strengthening. The participants demonstrated mean usual gait speeds (≥1.0 m/s), endurance (≥350 m), and functional ability (≥10 score on performance battery) that were within normal limits after 12 weeks of training. Fastest gait speed (≥1.5 m/s) and muscle strength also improved significantly. Improvements were maintained during follow-up testing after 3–6 months. In summary, a 12-week intervention for frail, mobility-disabled participants led to improvements in walking, function, and strength.

Restricted access

Mirko Brandes, Berit Steenbock and Norman Wirsik

. Discussion To our knowledge, this is the first study to not only measure energy costs of common activities in preschoolers by indirect calorimetry, expressed in AMEs, but also compare them with the METs given in the CEEY. 1 Noteworthy, we found statistically and clinically significant differences for all

Restricted access

R. McNeill Alexander

Prilutsky (1999, target paper) reports that Crowninshield and Brand's (1981) criterion, minimization of the sum of the cubes of muscle stresses, works well as a predictor of the division of labor between muscles, for various tasks. However, no direct benefit from minimizing this particular sum is apparent, and it seems likely that it is merely a correlate of the criterion that actually drives muscle choice. In many tasks, there would be a clear, direct benefit from minimizing metabolic energy costs, as Prilutsky (1999) points out. Alexander (1997a, 1997b) and Minetti and Alexander (1997) have shown how the metabolic energy costs of muscle contraction can be estimated, and used to predict optimum muscle properties or optimal patterns of movement. This article explores the feasibility of using the same approach to predict optimum division of labor between one- and two-joint muscles.

Restricted access

Gisela Kobberling, Louis W. Jankowski and Luc Leger

The oxygen consumption (VO2) of 30 (10 females, 20 males) legally blind adolescents and their sighted controls were compared for treadmill walking (3 mph, 4.8 km/h) and running (6 mph, 9.6 km/h). The VO2 of the visually impaired subjects averaged 24.4% and 10.8% higher than those of their same-sex age-matched controls, and 42.8% and 11.2% higher than the American College of Sports Medicine (ACSM) norms for walking (p<.01) and running (p<.05), respectively. The normal association between aerobic capacity and locomotor energy costs was evident among the sighted controls (r= .44, p<.05) but insignificant (r=.35, p>.05) for the visually impaired subjects. The energy costs of both walking and running were highest among the totally blind subjects, and decreased toward normal as a function of residual vision among the legally blind subjects. The energy costs of walking and running for blind adolescents are higher than both those of sighted controls and the ACSM norm values.

Restricted access

Lisa Chu and Brian W. Timmons

Nutritional considerations for the overweight young athlete have not been thoroughly discussed in the scientific literature. With the high prevalence of childhood obesity, more children participating in sports are overweight or obese. This is particularly true for select sports, such as American football, where large size provides an added advantage. While sport participation should be encouraged because of the many benefits of physical activity, appropriate nutritional practices are vital for growth, and optimizing performance and health. The overweight young athlete may face certain challenges because of variable energy costs and nutrient requirements for growth and routine training, compared with nonoverweight athletes. Special attention should be given to adopting healthy lifestyle choices to prevent adverse health effects due to increased adiposity. In this review, we aim to discuss special nutritional considerations and highlight gaps in the literature concerning nutrition for overweight young athletes compared with their nonoverweight peers.

Open access

Stewart G. Trost, Christopher C. Drovandi and Karin Pfeiffer

Background:

Published energy cost data for children and adolescents are lacking. The purpose of this study was to measure and describe developmental trends in the energy cost of 12 physical activities commonly performed by youth.

Methods:

A mixed age cohort of 209 participants completed 12 standardized activity trials on 4 occasions over a 3-year period (baseline, 12-months, 24-months, and 36-months) while wearing a portable indirect calorimeter. Bayesian hierarchical regression was used to link growth curves from each age cohort into a single curve describing developmental trends in energy cost from age 6 to 18 years.

Results:

For sedentary and light-intensity household chores, YOUTH METs (METy) remained stable or declined with age. In contrast, METy values associated with brisk walking, running, basketball, and dance increased with age.

Conclusions:

The reported energy costs for specific activities will contribute to efforts to update and expand the youth compendium.

Open access

Kate Ridley and Timothy Olds

Background:

To improve the scope of the Youth Compendium of Energy Expenditures, a range of everyday activities of varying intensity should be measured. This study measures the energy cost of children undertaking common household chores, rollerblading and riding a foot-propelled scooter.

Methods:

Participants were 9- to 14-year-old children. A metabolic cart was used to measure oxygen cost (VO2) of a variety of household chores. A Cosmed K4b2 portable oxygen analyzer was used to measure VO2 during rollerblading and riding a scooter at self-selected speeds. Energy costs for each participant were calculated as child METs.

Results:

Mean child MET costs for the household chores ranged from 1.3 to 3.6 METs. Rollerblading and riding a scooter yielded mean child MET costs of 6.5 and 6.3 METs respectively.

Conclusions:

Household chores were found to be of light to moderate intensity, while rollerblading and riding a scooter were vigorous activities.

Restricted access

Leon Straker and Rebecca Abbott

This study compared the cardiovascular responses and energy costs of new and traditional screen based entertainments, as played by twenty 9- to 12-year-old children. Playing traditional electronic games resulted in little change to heart rate or energy expenditure compared with watching a DVD. In contrast, playing an active-input game resulted in a 59% increase in heart rate (p < .001) and a 224% increase in energy expenditure (p < .001) for boys and girls. The average heart rate of 130 bpm and energy expenditure of 0.13 kcal · min−1 · kg−1 achieved during active-input game use equates with moderate intensity activities such as basketball and jogging. Active-input electronic games might provide children with opportunities to engage with technology and be physically active at the same time.

Restricted access

James B. Dear, Michelle M. Porter and A. Elizabeth Ready

This study compared the intensity and energy cost of playing 9 holes of golf with 40 min of lawn mowing in older men and determined whether both met the current recommendations for health benefits. Eighteen men (age 71.2 ± 4.4 yr, BMI 27.3 ± 2.3; M ± SD) completed a graded treadmill test. During golfing and lawn-mowing field tests, oxygen consumption and walking velocity and distance were measured using a portable metabolic system and global positioning system receiver. The net energy costs of golfing and lawn mowing were 310 and 246 kcal, respectively. The average intensities in metabolic equivalents of golfing and lawn mowing were 2.8 ± 0.5 and 5.5 ± 0.9, respectively. Both lawn mowing and golfing met the original intensity and energy expenditure requirements for health benefits specified by the American College of Sports Medicine in 1998, but only lawn mowing met the 2007 intensity recommendations.