Search Results

You are looking at 1 - 10 of 55 items for :

  • "essential amino acids" x
  • Refine by Access: All Content x
Clear All
Restricted access

Scott C. Forbes, Linda McCargar, Paul Jelen, and Gordon J. Bell

The purpose was to investigate the effects of a controlled typical 1-day diet supplemented with two different doses of whey protein isolate on blood amino acid profiles and hormonal concentrations following the final meal. Nine males (age: 29.6 ± 6.3 yrs) completed four conditions in random order: a control (C) condition of a typical mixed diet containing ~10% protein (0.8 g·kg–1), 65% carbohydrate, and 25% fat; a placebo (P) condition calorically matched with carbohydrate to the whey protein conditions; a low-dose condition of 0.8 grams of whey protein isolate per kilogram body mass per day (g·kg–1·d–1; W1) in addition to the typical mixed diet; or a high-dose condition of 1.6 g·kg–1·d–1 (W2) of supplemental whey protein in addition to the typical mixed diet. Following the final meal, significant (p < .05) increases in total amino acids, essential amino acids (EAA), branch-chained amino acids (BCAA), and leucine were observed in plasma with whey protein supplementation while no changes were observed in the control and placebo conditions. There was no significant group difference for glucose, insulin, testosterone, cortisol, or growth hormone. In conclusion, supplementing a typical daily food intake consisting of 0.8 g of protein·kg–1·d–1 with a whey protein isolate (an additional 0.8 or 1.6 g·kg–1·d–1) significantly elevated total amino acids, EAA, BCAA, and leucine but had no effect on glucose, insulin, testosterone, cortisol, or growth hormone following the final meal. Future acute and chronic supplementation research examining the physiological and health outcomes associated with elevated amino acid profiles is warranted.

Restricted access

Jeferson L. Jacinto, João P. Nunes, Stefan H.M. Gorissen, Danila M.G. Capel, Andrea G. Bernardes, Alex S. Ribeiro, Edilson S. Cyrino, Stuart M. Phillips, and Andreo F. Aguiar

; Volek et al., 2013 ) compared with lower quality proteins, such as soy, wheat, and collagen protein. The superiority of high-quality proteins is mainly attributable to their high content of essential amino acids (EAAs; Volek et al., 2013 ); EAAs are building blocks of proteins ( Shimomura & Kitaura

Open access

Oliver C. Witard, Arny A. Ferrando, and Stuart M. Phillips

of muscle mitochondrial (vs. myofibrillar) proteins, coupled with the relatively short 4-hr measurement period, likely contributed to this surprising observation. In 1999, Tipton and colleagues demonstrated that orally ingested essential amino acids, rather than nonessential amino acids, were

Full access

Kevin D. Tipton

Adaptations to exercise training are determined by the response of metabolic and molecular mechanisms that determine changes in proteins. The type, intensity, and duration of exercise, as well as nutrition, determine these responses. The importance of protein, in the form of intact proteins, hydrolysates, or free amino acids, for exercise adaptations is widely recognized. Exercise along with protein intake results in accumulation of proteins that influence training adaptations. The total amount of protein necessary to optimize adaptations is less important than the type of protein, timing of protein intake, and the other nutrients ingested concurrently with the protein. Acute metabolic studies offer an important tool to study the responses of protein balance to various exercise and nutritional interventions. Recent studies suggest that ingestion of free amino acids plus carbohydrates before exercise results in a superior anabolic response to exercise than if ingested after exercise. However, the difference between pre- and post exercise ingestion of intact proteins is not apparent. Thus, the anabolic response to exercise plus protein ingestion seems to be determined by the interaction of timing of nutrient intake in relation to exercise and the nutrients ingested. More research is necessary to delineate the optimal combination of nutrients and timing for various types of training adaptations. Protein and amino acid intake have long been deemed important for athletes and exercising individuals. Olympic athletes, from the legendary Milo to many in the 1936 Berlin games, reportedly consumed large amounts of protein. Modern athletes may consume slightly less than these historical figures, yet protein is deemed extremely important by most. Protein is important as a source of amino acids for recovery from exercise and repair of damaged tissues, as well as for adaptations to exercise training, such as muscle hypertrophy and mitochondrial biogenesis.

Restricted access

Kazunori Nosaka, P.▀ Sacco, and K.▀ Mawatari

This study investigated the effect of a supplement containing 9 essential and 3 non-essential amino acids on muscle soreness and damage by comparing two endurance exercise bouts of the elbow fexors with amino acid or placebo supplementation in a double blind crossover design. The supplement was ingested 30 min before (10 h post-fasting) and immediately after exercise (Experiment 1), or 30 min before (2-3 h after breakfast), immediately post, and 8 more occasions over 4-day post-exercise (Experiment 2). Changes in muscle soreness and indicators of muscle damage for 4 days following exercise were compared between supplement conditions using two-way ANOVA. No significant differences between conditions were evident for Experiment 1; however, plasma creatine kinase, aldolase, myoglobin, and muscle soreness were significantly lower for the amino acid versus placebo condition in Experiment 2. These results suggest that amino acid supplementation attenuates DOMS and muscle damage when ingested in recovery days.

Restricted access

Robert R. Wolfe

We propose that there is a link between muscle protein synthesis and breakdown that is regulated, in part, through maintenance of the free intracellular pool of essential amino acids. For example, we propose that muscle protein breakdown is paradoxically elevated in the anabolic state following resistance exercise in part because the even greater stimulation of synthesis would otherwise deplete this pool. Thus, factors regulating muscle protein breakdown must be evaluated in the context of the prevailing rate of muscle protein synthesis. Further, the direct effect of factors on breakdown may depend on the physiological state. For example, local hyperinsulinemia suppresses accelerated muscle protein breakdown after exercise, but not normal resting breakdown. Thus, factors regulating muscle protein breakdown in human subjects are complex and interactive.

Full access

Protein Needs of Physically Active Children

Re: Golden Horseshoe Pediatric Exercise Group: Proceedings Paper

Kimberly A. Volterman and Stephanie A. Atkinson

Current Dietary Reference Intakes (DRI) for protein for children and youth require revision as they were derived primarily on nitrogen balance data in young children or extrapolated from adult values; did not account for the possible influence of above average physical activity; and did not set an upper tolerable level of intake. Revision of the protein DRIs requires new research that investigates: 1) long-term dose-response to identify protein and essential amino acid requirements of both sexes at various pubertal stages and under differing conditions of physical activity; 2) the acute protein needs (quantity and timing) following a single bout of exercise; 3) the potential adverse effects of chronic high intakes of protein; and 4) new measurement techniques (i.e., IAAO or stable isotope methodologies) to improve accuracy of protein needs. While active individuals may require protein in excess of current DRIs, most active Canadian children and youth have habitual protein intakes that exceed current recommendations.

Restricted access

Nicholas A. Ratamess, Jay R. Hoffman, Ryan Ross, Miles Shanklin, Avery D. Faigenbaum, and Jie Kang

The authors aimed to examine the acute hormonal and performance responses to resistance exercise with and without prior consumption of an amino acid/creatine/energy supplement. Eight men performed a resistance-exercise protocol at baseline (BL), 20 min after consuming a supplement (S) consisting of essential amino acids, creatine, taurine, caffeine, and glucuronolactone or a maltodextrin placebo (P). Venous blood samples were obtained before and immediately after (IP), 15 min (15P), and 30 min (30P) after each protocol. Area under the curve of resistance-exercise volume revealed that BL was significantly less than S (10%) and P (8.6%). For fatigue rate, only S (18.4% ± 12.0%) was significantly lower than BL (32.9% ± 8.4%). Total testosterone (TT) and growth hormone (GH) were significantly elevated at IP and 15P in all conditions. The GH response was significantly lower, however, in S and P than in BL. The TT and GH responses did not differ between S and P. These results indicated that a supplement consisting of amino acids, creatine, taurine, caffeine, and glucuronolactone can modestly improve high-intensity endurance; however, the anabolic-hormonal response was not augmented.

Restricted access

Sharon L. Miller, Carl M. Maresh, Lawrence E. Armstrong, Cara B. Ebbeling, Shannon Lennon, and Nancy R. Rodriguez

The interaction of substrates and hormones in response to ingestion of intact proteins during endurance exercise is unknown. This study characterized substrate and hormone responses to supplementation during endurance exercise. Nine male runners participated in 3 trials in which a non-fat (MILK), carbohydrate (CHO), or placebo (PLA) drink was consumed during a 2-hour treadmill >· run at 65% V̇O2max. Circulating levels of insulin, glucagon, epinephrine, norepi-nephrine, growth hormone, testosterone, and cortisol were measured. Plasma substrates included glucose, lactate, free fatty acids, and select amino acids. Except for insulin and cortisol, hormones increased with exercise. While post-exercise insulin concentrations declined similarly in all 3 trials, the glucagon increase was greatest following MILK consumption. CHO blunted the post-exercise increase in growth hormone compared to levels in MILK. Free fatty acids and plasma amino acids also were responsive to nutritional supplementation with both CHO and MILK attenuating the rise in free fatty acids compared to the increase observed in PLA. Correspondingly, respiratory exchange ratio increased during CHO. Essential amino acids increased significantly only after MILK and were either unchanged or decreased in CHO. PLA was characterized by a decrease in branched-chain amino acid concentrations. Modest nutritional supplementation in this study altered the endocrine response as well as substrate availability and utilization following and during an endurance run, respectively.

Restricted access

Milou Beelen, Louise M. Burke, Martin J. Gibala, and Luc J.C. van Loon

During postexercise recovery, optimal nutritional intake is important to replenish endogenous substrate stores and to facilitate muscle-damage repair and reconditioning. After exhaustive endurance-type exercise, muscle glycogen repletion forms the most important factor determining the time needed to recover. Postexercise carbohydrate (CHO) ingestion has been well established as the most important determinant of muscle glycogen synthesis. Coingestion of protein and/or amino acids does not seem to further increase muscle glycogensynthesis rates when CHO intake exceeds 1.2 g · kg−1 · hr−1. However, from a practical point of view it is not always feasible to ingest such large amounts of CHO. The combined ingestion of a small amount of protein (0.2–0.4 g · (0.2−0.4 g · kg−1 · hr−1) with less CHO (0.8 g · kg−1 · hr−1) stimulates endogenous insulin release and results in similar muscle glycogen-repletion rates as the ingestion of 1.2 g · kg−1 · hr−1 CHO. Furthermore, postexercise protein and/or amino acid administration is warranted to stimulate muscle protein synthesis, inhibit protein breakdown, and allow net muscle protein accretion. The consumption of ~20 g intact protein, or an equivalent of ~9 g essential amino acids, has been reported to maximize muscle protein-synthesis rates during the first hours of postexercise recovery. Ingestion of such small amounts of dietary protein 5 or 6 times daily might support maximal muscle protein-synthesis rates throughout the day. Consuming CHO and protein during the early phases of recovery has been shown to positively affect subsequent exercise performance and could be of specific benefit for athletes involved in multiple training or competition sessions on the same or consecutive days.