Search Results

You are looking at 1 - 10 of 42 items for :

  • "executive control" x
Clear All
Restricted access

Veronique Labelle, Laurent Bosquet, Said Mekary, Thien Tuong Minh Vu, Mark Smilovitch and Louis Bherer

The purpose of this study was to assess the effects of exercise intensity, age, and fitness levels on executive and nonexecutive cognitive tasks during exercise. Participants completed a computerized modified-Stroop task (including denomination, inhibition, and switching conditions) while pedaling on a cycle ergometer at 40%, 60%, and 80% of peak power output (PPO). We showed that a bout of moderate-intensity (60% PPO) to high-intensity (80% PPO) exercise was associated with deleterious performance in the executive component of the computerized modified-Stroop task (i.e., switching condition), especially in lower-fit individuals (p < .01). Age did not have an effect on the relationship between acute cardiovascular exercise and cognition. Acute exercise can momentarily impair executive control equivalently in younger and older adults, but individual’s fitness level moderates this relation.

Restricted access

Jacqueline M. Del Giorno, Eric E. Hall, Kevin C. O’Leary, Walter R. Bixby and Paul C. Miller

The purpose of this study was to test the transient hypofrontality theory (Dietrich, 2003) by examining the influence of exercise intensity on executive control processes during and following submaximal exercise. Thirty participants (13 female) exercised for 30 min at ventilatory threshold (VT) or at 75% of VT. The Contingent Continuous Performance Task (CPT) and Wisconsin Card Sorting Test (WCST) were used as measures of executive control. They were administered before, during, immediately following, and 20 min after exercise. An increase in false alarms and unique errors (p ≤ .05) occurred during both conditions. False alarms for the CPT and total and perseverative errors for the WCST remained elevated immediately following exercise at VT, but not at exercise below VT (p ≤ .01). The decreased executive control function during exercise can be explained by the transient hypofrontality theory. Following VT, executive control performance remained poor possibly owing to an additional amount of time the brain needs to return to homeostasis following intense exercise.

Restricted access

Florentino Huertas, Javier Zahonero, Daniel Sanabria and Juan Lupiáñez

The present study explored the effects of three different activity conditions on three attentional functions: alerting, orienting, and executive control. A group of highly experienced cyclists performed the Attention Network Test–Interactions (Callejas, Lupiáñez, & Tudela, 2004) at rest, during moderate aerobic exercise, and during intense aerobic exercise. Results indicated that aerobic exercise accelerated reaction time and reduced the alerting effect compared with the rest condition. However, aerobic exercise did not modulate the functioning of either the orienting or the executive control attentional networks. No differences in reaction time or attentional functioning were observed between the two aerobic exercise workloads. The present results suggest that moderate aerobic exercise modulates the functioning of phasic alertness by increasing the general state of tonic vigilance.

Restricted access

Shu-Shih Hsieh, Yu-Kai Chang, Chin-Lung Fang and Tsung-Min Hung

The current study examined the effects of acute resistance exercise (RE) on adult males’ attention control. Eighteen younger males (23.9 ± 2.3 years) and 17 older males (66.4 ± 1.2 years) were recruited. Participants underwent a RE session and a reading session in a counterbalanced order. RE protocol required individuals to perform two sets of 10 repetitions of eight exercises using weights set at 70% of 10-repetition maximum. Attention control was assessed by go/no-go SART with intraindividual variability in reaction times (IIV in RT), in addition to reaction time and accuracy, employed as measures of attention control. Results indicated that IIV in RT was smaller following RE sessions than after reading sessions for both age groups. In addition, RTs were shorter after the exercise session. These findings suggest that RE enhances attention control in adult males and that the size of this effect is not moderated by age.

Restricted access

Chiao-Ling Hung, Yu-Kai Chang, Yuan-Shuo Chan, Chia-Hao Shih, Chung-Ju Huang and Tsung-Min Hung

The purpose of the current study was to examine the relationship between motor ability and response inhibition using behavioral and electrophysiological indices in children with ADHD. A total of 32 participants were recruited and underwent a motor ability assessment by administering the Basic Motor Ability Test-Revised (BMAT) as well as the Go/No-Go task and event-related potential (ERP) measurements at the same time. The results indicated that the BMAT scores were positively associated with the behavioral and ERP measures. Specifically, the BMAT average score was associated with a faster reaction time and higher accuracy, whereas higher BMAT subset scores predicted a shorter P3 latency in the Go condition. Although the association between the BMAT average score and the No-Go accuracy was limited, higher BMAT average and subset scores predicted a shorter N2 and P3 latency and a larger P3 amplitude in the No-Go condition. These findings suggest that motor abilities may play roles that benefit the cognitive performance of ADHD children.

Restricted access

Jacinta M. Saldaris, Grant J. Landers and Brendan S. Lay

Cognitive function is the performance of objective tasks that require conscious mental effort and is an emerging area in sport performance. Functions involving decision making, working memory, and executive control are important during many sporting situations and are explored in this study. In

Restricted access

Arthur F. Kramer, Sowon Hahn and Edward McAuley

The article provides a brief review of the literature on the relationship between aerobic Fitness and neurocognitive function, particularly as it relates to older adults. Cross-sectional studies provide strong support for the beneficial influence of fitness on neurocognitive function. The longitudinal or interventional literature, however, provides more equivocal support for this relationship. In discussing the literature, the authors introduce a new hypothesis, the executive control/fitness hypothesis, which suggests that selective neurocognitive benefits will be observed with improvements in aerobic fitness; that is, executive control processes that include planning, scheduling, task coordination, inhibition, and working memory will benefit from enhanced fitness. Preliminary evidence for this hypothesis is discussed.

Restricted access

Naiman A. Khan and Charles H. Hillman

Physical inactivity has been shown to increase the risk for several chronic diseases across the lifespan. However, the impact of physical activity and aerobic fitness on childhood cognitive and brain health has only recently gained attention. The purposes of this article are to: 1) highlight the recent emphasis for increasing physical activity and aerobic fitness in children’s lives for cognitive and brain health; 2) present aspects of brain development and cognitive function that are susceptible to physical activity intervention; 3) review neuroimaging studies examining the cross-sectional and experimental relationships between aerobic fitness and executive control function; and 4) make recommendations for future research. Given that the human brain is not fully developed until the third decade of life, preadolescence is characterized by changes in brain structure and function underlying aspects of cognition including executive control and relational memory. Achieving adequate physical activity and maintaining aerobic fitness in childhood may be a critical guideline to follow for physical as well as cognitive and brain health.

Restricted access

Marcel Bouffard

Educable mentally handicapped persons lag well behind nonhandicapped children in the development of both fine and gross movement skills. These persons have difficulty in solving movement problems. Based upon recent work done in cognitive science, it is argued that this lag in movement skill development is related to five major sources: (a) deficiencies in the knowledge base or lack of access to it, (b) lack of spontaneous use of strategies, (c) inadequate metacognitive knowledge and understanding, (d) lack of executive control, and (e) inadequate motivation and practice. A seven-step procedure to teach movement skills to mentally handicapped persons that takes into account these five factors is described. Implications for adapted physical activity are outlined briefly.

Restricted access

Caterina Pesce and Michel Audiffren

This study investigated the effects of acute exercise on 53 young (16–24 years) and 47 older (65–74 years) adults’ switch-task performance. Participants practiced sports requiring either low or high cognitive demands. Both at rest and during aerobic exercise, the participants performed two reaction time tasks that differed in the amount of executive control involved in switching between global and local target features of visual compound stimuli. Switch costs were computed as reaction time differences between switch and nonswitch trials. In the low demanding task, switch costs were sensitive only to age, whereas in the high demanding task, they were sensitive to acute exercise, age, and sport-related cognitive expertise. The results suggest that acute exercise enhances cognitive flexibility and facilitates complex switch-task performance. Both young age and habitual practice of cognitively challenging sports are associated with smaller switch costs, but neither age nor cognitive expertise seem to moderate the relationship between acute exercise and switch-task performance.