Search Results

You are looking at 1 - 10 of 29 items for :

  • "exertional heat stroke" x
Clear All
Restricted access

Margaret C. Morrissey, Michael R. Szymanski, Andrew J. Grundstein and Douglas J. Casa

Exertional heat stroke (EHS) is a life-threatening condition characterized by an internal temperature ≥40°C with central-nervous-system dysfunction ( Casa et al., 2015 ). EHS is interesting to study when examining prevention strategies and factors that predispose individuals to develop the

Restricted access

Brendon P. McDermott, Douglas J. Casa, Susan W. Yeargin, Matthew S. Ganio, Lawrence E. Armstrong and Carl M. Maresh


To describe the current scientific evidence of recovery and return to activity following exertional heat stroke (EHS).

Data Sources:

Information was collected using MEDLINE and SPORTDiscus databases in English using combinations of key words, exertional heat stroke, recovery, rehabilitation, residual symptoms, heat tolerance, return to activity, and heat illness.

Study Selection:

Relevant peer-reviewed, military, and published text materials were reviewed.

Data Extraction:

Inclusion criteria were based on the article’s coverage of return to activity, residual symptoms, or testing for long-term treatment. Fifty-two out of the original 554 sources met these criteria and were included in data synthesis.

Data Synthesis:

The recovery time following EHS is dependent on numerous factors, and recovery length is individually based and largely dependent on the initial care provided.


Future research should focus on developing a structured return-to-activity strategy following EHS.

Restricted access

Douglas J. Casa, Yuri Hosokawa, Luke N. Belval, William M. Adams and Rebecca L. Stearns

Exertional heat stroke (EHS) is among the leading causes of sudden death during sport and physical activity. However, previous research has shown that EHS is 100% survivable when rapidly recognized and appropriate treatment is provided. Establishing policies to address issues related to the prevention and treatment of EHS, including heat acclimatization, environment-based activity modification, body temperature assessment using rectal thermometry, and immediate, onsite treatment using cold-water immersion attenuates the risk of EHS mortality and morbidity. This article provides an overview of the current evidence regarding EHS prevention and management. The transfer of scientific knowledge to clinical practice has shown great success for saving EHS patients. Further efforts are needed to implement evidence-based policies to not only mitigate EHS fatality but also to reduce the overall incidence of EHS.

Restricted access

Tal Marom, David Itskoviz, Haim Lavon and Ishay Ostfeld


Exertional heat stroke (EHS) is a major concern in military trainees performing intense physical exercise, with substantial morbidity rates. Prehospital diagnosis of EHS is essentially clinical. Thus, soldiers, command personnel, and medical staff are taught to recognize this injury and immediately begin aggressive treatment to prevent further deterioration.

Patients and Methods:

During 2007, 5 otherwise healthy Israeli Defense Forces (IDF) soldiers were diagnosed with EHS while performing strenuous exercise. They were treated vigorously according to the IDF EHS-treatment protocol and were referred to the emergency department.


On arrival at the emergency department, physical examination including rectal temperature was unremarkable in all soldiers. Blood and urine workup showed near-normal values. No other medical conditions that could have explained the clinical presentation were found. All soldiers were discharged shortly afterward, with no further consequences. A heat-tolerance test was performed several weeks after the event and was interpreted as normal. All soldiers returned to active service.


Because the initial clinical findings were very suggestive of EHS and because no other condition could have explained the prehospital transient hyperthermia, we suggest that these soldiers were correctly diagnosed with EHS, and we propose that rapid vigorous cooling prevented further deterioration and complications. We suggest calling this condition aborted heat stroke.

Restricted access

Tyler T. Truxton and Kevin C. Miller

Clinical Scenario:

Exertional heat stroke (EHS) is a medical emergency which, if left untreated, can result in death. The standard of care for EHS patients includes confirmation of hyperthermia via rectal temperature (Trec) and then immediate cold-water immersion (CWI). While CWI is the fastest way to reduce Trec, it may be difficult to lower and maintain water bath temperature in the recommended ranges (1.7°C–15°C [35°F–59°F]) because of limited access to ice and/or the bath being exposed to high ambient temperatures for long periods of time. Determining if Trec cooling rates are acceptable (ie, >0.08°C/min) when significantly hyperthermic humans are immersed in temperate water (ie, ≥20°C [68°F]) has applications for how EHS patients are treated in the field.

Clinical Question:

Are Trec cooling rates acceptable (≥0.08°C/min) when significantly hyperthermic humans are immersed in temperate water?

Summary of Findings:

Trec cooling rates of hyperthermic humans immersed in temperate water (≥20°C [68°F]) ranged from 0.06°C/min to 0.19°C/min. The average Trec cooling rate for all examined studies was 0.11±0.06°C/min.

Clinical Bottom Line:

Temperature water immersion (TWI) provides acceptable (ie, >0.08°C/min) Trec cooling rates for hyperthermic humans post-exercise. However, CWI cooling rates are higher and should be used if feasible (eg, access to ice, shaded treatment areas).

Strength of Recommendation:

The majority of evidence (eg, Level 2 studies with PEDro scores ≥5) suggests TWI provides acceptable, though not ideal, Trec cooling. If possible, CWI should be used instead of TWI in EHS scenarios.

Restricted access

William M. Adams, Yuri Hosokawa, Robert A. Huggins, Stephanie M. Mazerolle and Douglas J. Casa


Evidence-based best practices for the recognition and treatment of exertional heat stroke (EHS) indicate that rectal thermometry and immediate, aggressive cooling via cold-water immersion ensure survival from this medical condition. However, little is known about the recovery, medical follow-up, and return to activity after an athlete has suffered EHS.


To highlight the transfer of evidenced-based research into clinical practice by chronicling the treatment, recovery, and return to activity of a runner who suffered an EHS during a warm-weather road race.


Case study.


Warm-weather road race.


53-y-old recreationally active man.


A runner’s treatment, recovery, and return to activity from EHS and 2014 Falmouth Road Race performance.

Main Outcomes:

Runner’s perceptions and experiences with EHS, body temperature, heart rate, hydration status, exercise intensity.


The runner successfully completed the 2014 Falmouth Road Race without incident of EHS. Four dominant themes emerged from the data: predisposing factors, ideal treatment, lack of medical follow-up, and patient education. The first theme identified 3 predisposing factors that contributed to the runner’s EHS: hydration, sleep loss, and lack of heat acclimatization. The runner received ideal treatment using evidence-based best practices. A lack of long-term medical care following the EHS with no guidance on the runner’s return to full activity was observed. The runner knew very little about EHS before the 2013 race, which drove him to seek knowledge as to why he suffered EHS. Using this newly learned information, he successfully completed the 2014 Falmouth Road Race without incident.


This case supports prior literature examining the factors that predispose individuals to EHS. Although evidence-based best practices regarding prompt recognition and treatment of EHS ensure survival, this case highlights the lack of medical follow-up and physician-guided return to activity after EHS.

Open access

Kailin C. Parker, Rachel R. Shelton and Rebecca M. Lopez

Clinical Scenario Death from exertional heat stroke (EHS) is preventable if the condition is promptly recognized and the patient is aggressively cooled. 1 , 2 Morbidity and mortality with EHS are often associated with how long a patient with EHS temperature remains above the critical threshold of

Restricted access

Zachary Y. Kerr, Susan W. Yeargin, Yuri Hosokawa, Rebecca M. Hirschhorn, Lauren A. Pierpoint and Douglas J. Casa

Exertional heat illnesses (EHIs) include exercise-associated muscle cramps, heat syncope, heat exhaustion, and exertional heat stroke. If not properly treated, exertional heat stroke can result in vital organ damage, disability, or death. 1 , 2 An estimated 1 in 6 of all American football

Open access

Kayla E. Boehm and Kevin C. Miller

recommendations for exertional heat stroke (EHS) victims (ie, 0.15°C/min). 5 Table 1 Characteristics of Included Studies Authors Armstrong et al 3 DeMartini et al 4 Lemire et al 2 Patients, n 8000 athletes. 21 (35 [3] y) were diagnosed with extreme hyperthermia and either heat exhaustion or EHS. 17 males (age