Search Results

You are looking at 1 - 10 of 43 items for :

  • "finger-tapping" x
  • Refine by Access: All Content x
Clear All
Restricted access

Nobuyuki Inui and Takuya Ichihara

To examine the relation between timing and force control during finger tapping sequences by both pianists and nonpianists, participants lapped a force plate connected to strain gauges. A series of finger tapping tasks consisted of 16 combinations of pace (intertap interval: 180. 200, 400. or 800 ms) and peak force (50, 100. 200. or 400 g). Analysis showed that, although movement timing was independent of force control under low or medium pace conditions, there were strong interactions between the 2 parameters under high pace conditions. The results indicate that participants adapted the movement by switching from separately controlling these parameters in the slow and moderate movement to coupling them in the fast movement. While variations in intertap interval affected force production by nonpianists. they had little effect for pianists. The ratios of time-to-peak force to press duration increased linearly in pianists but varied irregularly in nonpianists, as the required force decreased. Thus, pianists regulate peak force by timing control of peak force to press duration, suggesting that training affects the relationship between the 2 parameters.

Restricted access

Nobuyuki Inui and Yumi Katsura

We conducted an experiment to examine age-related differences in the control of force and timing in a finger-tapping sequence with an attenuated-force tap. Participants between 7 and 20 years old tapped on a load cell with feedback on practice trials. They were required to recall the force pattern (300 g, 300 g, 300 g, 100 g) and the intertap interval (400 ms) without feedback on test trials. Analysis indicated that the last attenuated tap affected the first three taps of the tapping sequence in adults and adolescents but not in children. Adults and adolescents appeared to respond with four taps as a chunk, resulting in a contextual effect on the timing of force control, but younger children had difficulty with such chunking. Further, adults and adolescents were able to more accurately produce individual force magnitudes to match target magnitudes than younger children. For the ratio of force in serial positions 1:4, 2:4, and 3:4, consequently, 7- to 8-year-old children had lower ratios than the other age groups. Although there was no difference among age groups for timing control of peak force to press duration as a control strategy of force, 7- to 8-year-old children spent more time to produce force than the other age groups. Peak force with a decreased force was more variable in the attenuated force serial position (4) than in the other serial positions in all five age groups. Peak force variability was particularly robust in younger children. These findings suggest that younger children have difficulty with both temporal and spatial (i.e., magnitude) components of force control.

Restricted access

Mark Holten Mora-Jensen, Pascal Madeleine, and Ernst Albin Hansen

Index finger tapping is a relatively simple motor task that is related to various everyday activities such as computer work and playing musical instruments. Furthermore, the task is widely applied in studies of both healthy individuals ( Hammond & Gunasekera, 2008 ; Hansen & Ohnstad, 2008

Restricted access

Tomoko Aoki, Hayato Tsuda, and Hiroshi Kinoshita

capacity of individual fingers. One of the groups of authors investigated dynamic aspects of finger motor function using maximum speed tapping with one of the four fingers (single-finger tapping) in healthy older individuals ( Aoki & Fukuoka, 2010 ). It was found that in healthy older adults, the index

Restricted access

Elizabeth L. Stegemöller, Joshua R. Tatz, Alison Warnecke, Paul Hibbing, Brandon Bates, and Andrew Zaman

heard and 1 designated the worst music ever heard ). These same pieces of music were used later during the finger tapping task. Music Both pieces included novel MIDI piano instrumentation and part-writing conventions typical of early 19th century Western classical practices and were commissioned by a

Restricted access

Maria Sundqvist, Jakob Åsberg Johnels, Jonas Lindh, Katja Laakso, and Lena Hartelius

In this study we systematically compared syllable repetition and finger tapping in healthy adults, and explored possible impacts of tempi, metronome, musical experience, and age on motor timing ability. One hundred healthy adults used finger-tapping and syllable repetition to perform an isochronous pulse in three different tempi, with and without a metronome. Results showed that the motor timing was more accurate with finger tapping than with syllable repetition in the slowest tempo, and the motor timing ability was better with the metronome than without. Persons with musical experience showed better motor timing accuracy than persons without such experience, and the timing asynchrony increased with increasing age. The slowest tempo 90 bpm posed extra challenges to the participants. We speculate that this pattern reflects the fact that the slow tempo lies outside the 3–8 Hz syllable rate of natural speech, which in turn has been linked to theta-based oscillations in the brain.

Restricted access

Tomoko Aoki, Shinichi Furuya, and Hiroshi Kinoshita

Using fast tapping tasks with each of the four fingers (single-finger tapping) and with two of the fingers used alternately (double-finger tapping), the ability to make rapid tapping movement by the individual fingers was compared between expert pianists and nonmusician controls in both genders. Maximal pinch and grasp forces were also measured to assess strength of individual fingers and whole hand, respectively. Movement of the ring and little fingers was slower than that of the index and middle fingers in both the pianists and controls. The slowness of the ring and little fingers was, however, much less evident in the pianists than the controls in both tapping tasks. The pianists also had smaller intertap interval variability for the index and middle fingers. No pianist–control difference was found for the pinch and grasp forces. Piano training, therefore, effectively changed the ability to move individual fingers rapidly, but not their flexor strength. No gender difference was found in any of the tapping tasks though males had greater strength. Gender thus does not appear to be a factor differentiating the ability to move individual fingers rapidly.

Restricted access

Nobuyuki Inui

An experiment was conducted to examine contextual effects of the magnitude of changes in force on force control in a finger-tapping sequence with an accentuated- (accentuated-force condition) or attenuated-force tap (attenuated-force condition). Participants were trained to produce a finger-tapping sequence with an intertap interval of 500 ms and four force patterns. During practice, visual force feedback pertaining to the two target forces in the tapping sequences was provided. After practice, the participants reproduced the learned tapping sequences in the absence of feedback. A main result was that the last accentuated-force tap affected the first three taps of the tapping sequence. For the accentuated-force conditions, the larger the difference between the first three target forces and the last target force, the larger the first three forces. This indicates the contextual effect of serial position for force control. This effect was not observed, however, under the attenuated-force conditions.

Restricted access

Hirokazu Sasaki, Junya Masumoto, and Nobuyuki Inui

The present study examined whether the elderly produced a hastened or delayed tap with a negative or positive constant intertap interval error more frequently in self-paced tapping than in the stimulus-synchronized tapping for the 2 N target force at 2 or 4 Hz frequency. The analysis showed that, at both frequencies, the percentage of the delayed tap was larger in the self-paced tapping than in the stimulus-synchronized tapping, whereas the hastened tap showed the opposite result. At the 4 Hz frequency, all age groups had more variable intertap intervals during the self-paced tapping than during the stimulus-synchronized tapping, and the variability of the intertap intervals increased with age. Thus, although the increase in the frequency of delayed taps and variable intertap intervals in the self-paced tapping perhaps resulted from a dysfunction of movement timing in the basal ganglia with age, the decline in timing accuracy was somewhat improved by an auditory cue. The force variability of tapping at 4 Hz further increased with age, indicating an effect of aging on the control of force.

Restricted access

Waneen W. Spirduso, Britta G. Schoenfelder-Zohdi, Jonghwan Choi, and Susan M. Jay

This study investigated age-related differences in tapping speed with respect to warm-up and fatigue effects and also with respect to task complexity. An additional purpose was to determine the site of age-related slowing in stationary tapping. Adult females from three different age groups were asked to tap as fast as possible for 25 s with a specified digit combination by depressing microswitches on one or two metal boxes that were mounted on a data acquisition board. All groups showed a warm-up period during the first block, reached their peak tapping speed during the second block, and then gradually fatigued, as indicated by a decreasing number of taps. These findings suggest that to assess true tapping speed, a trial should not last more than 15 s, or the results may be confounded by fatigue effects. It was found that tapping with the thumb and index finger simultaneously is more difficult than tapping with one or both index fingers, regardless of age.