Search Results

You are looking at 1 - 10 of 45 items for :

  • "football training" x
Clear All
Restricted access

Jocelyn K. Mara, Kevin G. Thompson and Kate L. Pumpa

Purpose:

To investigate the physical and physiological response to different formats of various-sided games.

Methods:

Eighteen elite women’s soccer players wore 15-Hz global positioning system devices and heart-rate (HR) monitors during various-sided games (small, 4 vs 4 and 5 vs 5; medium, 6 vs 6 and 7 vs 7; large, 8 vs 8 and 9 vs 9).

Results:

Players covered more relative sprinting distance during large-sided games than in small-sided (P < .001, d = 0.69) and medium-sided (P < .001, d = 0.54) games. In addition, a greater proportion of total acceleration efforts that had a commencement velocity <1 m/s were observed in small-sided games (44.7% ± 5.5%) than in large-sided games (36.7% ± 10.6%) (P = .018, d = 0.94). This was accompanied by a greater proportion of acceleration efforts with a final velocity equivalent to the sprint threshold in large-sided games (15.4% ± 7.7%) than in small-sided games (5.2% ± 2.5%) (P < .001, d = 1.78). The proportion of time spent in HR zone 4 (>85% maximum HR) was greater during small-sided games (69.8% ± 2.5%) than in medium- (62.1% ± 2.8%, d = 2.90) and large-sided games (54.9% ± 3.1%) (P < .001, d = 5.29).

Conclusions:

The results from this study demonstrate that coaches can use small-sided games as an aerobic conditioning stimulus and to develop players’ explosiveness and repeat-sprint ability over short durations. Large-sided games can be used to maintain aerobic capacity and develop maximum speed over longer distances.

Restricted access

Eduardo A. Abade, Bruno V. Gonçalves, Nuno M. Leite and Jaime E. Sampaio

Purpose:

To provide the time–motion and physiological profile of regular training sessions (TS) performed during the competitive season by under-15 (U15), under-17 (U17), and under-19 (U19) elite-level Portuguese soccer players.

Methods:

One hundred fifty-one elite players of U15 (age 14.0 ± 0.2 y, n = 56), U17 (age 15.8 ± 0.4 y, n = 66), and U19 (age 17.8 ± 0.6 y, n = 29) participated in the study during a 9-wk period. Time–motion and body-impact data were collected using GPS technology (15 Hz) across 38 randomly selected TS that resulted in a total of 612 samples. In addition, heart rate (HR) was continuously monitored (1 Hz) in the selected TS.

Results:

The total distances covered (m) were higher in U17 (4648.3 ± 831.9), followed by U19 (4212.5 ± 935.4) and U15 (3964.5 ± 725.4) players (F = 45.84, P < .001). Total body impacts and relative impacts were lower in U15 (total: 490.8 ± 309.5, F = 7.3, P < .01), but no differences were identified between U17 (total: 584.0 ± 363.5) and U19 (total: 613.1 ± 329.4). U19 players had less high- and very-high-intensity activity (above 16 km/h; F = 11.8, P < .001) and moderate-intensity activity (10.0–15.9 km/h; F = 15.07, P < .001). HR values showed significant effects of zone (F = 575.7, P < .001) and interaction with age group (F = 9.7, P < .001), with pairwise differences between all zones (zone 1, <75%; zone 2, 75–84.9%; zone 3, 85–89.9%; zone 4, ≥90%). All players spent most of their time below 75% HRmax (U15, ~50%; U17, ~42%; U19, ~50%).

Conclusion:

Results showed high variability between TS, refraining from identifying meaningful trends when measuring performance, although different demands were identified according to age group. The U15 TS were less physiologically demanding, probably because of increased focus on small-sided games to develop basic tactical principles and technical skills. The focus on game-like situations imposed higher external and internal workloads on U17 and U19 players.

Open access

Mette Rørth, Tine Tjørnhøj-Thomsen, Prue Cormie, John L. Oliffe and Julie Midtgaard

.1177/089124397011001005 Uth , J. , Hornstrup , T. , Christensen , J.F. , Christensen , K.B. , Jorgensen , N.R. , Helge , E.W. , . . . Krustrup , P. ( 2016 ). Football training in men with prostate cancer undergoing androgen deprivation therapy: activity profile and short-term skeletal and postural balance

Restricted access

John R. Stofan, Kris L. Osterberg, Craig A. Horswill, Magie Lacambra, E. Randy Eichner, Scott A. Anderson and Robert Murray

The authors measured 24-h fluid-turnover (FTO) rate during 6 d of preseason training in U.S. college football players. Players, training (T, n = 9, full gear and contact drills) and reference (R, n = 4, conditioning without gear or contact), ingested a deuterium oxide (D2O) dose and provided urine samples every 24 h for analysis of D2O. During one ~2.3–h practice (wet-bulb globe temperature 24.6 °C), body-mass change, urine production, and voluntary fluid intake were measured to calculate gross sweat loss (GSL). Average FTO was 10.3 ± 2.2 L/d for T and 7.0 ± 1.0 L/d for R. GSL was 3.4 ± 1.5 L for T and 1.7 ± 1.3 for R (P > 0.05). By Day 6, body mass decreased significantly in T (–2.4 ± 1.3 kg, P < 0.05) but not in R (0.38 ± 0.95 kg). With preseason training under moderate environmental stress, football players had high FTO and sweat rates, which might have contributed to a loss of body mass during preseason football training.

Restricted access

Sebastien Racinais, Martin Buchheit, Johann Bilsborough, Pitre C. Bourdon, Justin Cordy and Aaron J. Coutts

Purpose:

To examine the physiological and performance responses to a heat-acclimatization camp in highly trained professional team-sport athletes.

Methods:

Eighteen male Australian Rules Football players trained for 2 wk in hot ambient conditions (31–33°C, humidity 34–50%). Players performed a laboratory-based heat-response test (24-min walk + 24 min seated; 44°C), a YoYo Intermittent Recovery Level 2 Test (YoYoIR2; indoor, temperate environment, 23°C) and standardized training drills (STD; outdoor, hot environment, 32°C) at the beginning and end of the camp.

Results:

The heat-response test showed partial heat acclimatization (eg, a decrease in skin temperature, heart rate, and sweat sodium concentration, P < .05). In addition, plasma volume (PV, CO rebreathing, +2.68 [0.83; 4.53] mL/kg) and distance covered during both the YoYoIR2 (+311 [260; 361] m) and the STD (+45.6 [13.9; 77.4] m) increased postcamp (P < .01). None of the performance changes showed clear correlations with PV changes (r < .24), but the improvements in running STD distance in hot environment were correlated with changes in hematocrit during the heat-response test (r = –.52, 90%CI [–.77; –.12]). There was no clear correlation between the performance improvements in temperate and hot ambient conditions (r < .26).

Conclusion:

Running performance in both hot and temperate environments was improved after a football training camp in hot ambient conditions that stimulated heat acclimatization. However, physiological and performance responses were highly individual, and the absence of correlations between physical-performance improvements in hot and temperate environments suggests that their physiological basis might differ.

Restricted access

Charles D.T. Macaulay

as a direct fatality. A player experiencing heat stroke due to football training and later dying would be classified as an indirect fatality. In each chapter, the authors break down the number of fatalities by year, cause of death, player position, and the type of play/action that caused the fatality

Restricted access

-0340 Integrating the Internal and External Training Loads in Soccer Ibrahim Akubat * Steve Barrett * Grant Abt * 5 2014 9 3 457 462 10.1123/ijspp.2012-0347 Time–Motion and Physiological Profile of Football Training Sessions Performed by Under-15, Under-17, and Under-19 Elite Portuguese Players Eduardo A

Restricted access

Jueyin Zheng

youth are participating and playing the game, as part of an NFL FLAG team or a youth-football training program. Currently more than 30,000 youth under age 12 are playing/learning about football as part of an organized youth-football training program on a regular basis. Organized recreational

Restricted access

David Rhodes, Mark Leather, Daniel Birdsall and Jill Alexander

their normal football training and competitive fixture demands. Group B underwent their normal football training and competitive fixture demands, with no additional proprioceptive training. Dynamic stability measures were completed for both groups at weeks 4, 8, and 16. All testing and training

Restricted access

Pedro Figueiredo, George P. Nassis and João Brito

afternoon and trained in the evening; no salivary samples were collected. The following 3 days included salivary sample collection every morning between 8:00 and 8:30 AM (prior to breakfast), followed by the team-based football training (morning session). Thus, the sIgA values reported represent day + 1 of