Search Results

You are looking at 1 - 4 of 4 items for :

  • "force capability" x
Clear All
Restricted access

Steven L. Fischer, Bryan R. Picco, Richard P. Wells and Clark R. Dickerson

Exerting manual forces is critical during occupational performance. Therefore, being able to estimate maximum force capacity is particularly useful for determining how these manual exertion demands relate to available capacity. To facilitate this type of prediction requires a complete understanding of how maximum force capacity is governed biomechanically. This research focused on identifying how factors including joint moment strength, balance and shoe-floor friction affected hand force capacity during pulling, pressing downward and pushing medially. To elucidate potential limiting factors, joint moments were calculated and contrasted with reporte joint strength capacities, the balancing point within the shoe-floor interface was calculated and expresess relative to the area defined by the shoe-floor interface, and the net applied horizontal forces were compare with the available friction. Each of these variables were calculated as participants exerted forces in a series o conditions designed to systematically control or restrict certain factors from limiting hand force capacity. The results demonstrated that hand force capacity, in all tested directions, was affected by the experimental conditions (up to 300%). Concurrently, biomechanical measures reached or surpassed reported criterion threshold inferring specific biomechanical limitations. Downward exertions were limited by elbow strength, wherea pulling exertions were often limited by balance along the anterior-posterior axis. No specific limitations wer identified for medial exertions.

Restricted access

Christopher J. Hasson, Richard E.A. van Emmerik and Graham E. Caldwell

In this study, a comprehensive evaluation of static and dynamic balance abilities was performed in young and older adults and regression analysis was used to test whether age-related variations in individual ankle muscle mechanical properties could explain differences in balance performance. The mechanical properties included estimates of the maximal isometric force capability, force-length, force-velocity, and series elastic properties of the dorsiflexors and individual plantarflexor muscles (gastrocnemius and soleus). As expected, the older adults performed more poorly on most balance tasks. Muscular maximal isometric force, optimal fiber length, tendon slack length, and velocity-dependent force capabilities accounted for up to 60% of the age-related variation in performance on the static and dynamic balance tests. In general, the plantarflexors had a stronger predictive role than the dorsiflexors. Plantarflexor stiffness was strongly related to general balance performance, particularly in quiet stance; but this effect did not depend on age. Together, these results suggest that age-related differences in balance performance are explained in part by alterations in muscular mechanical properties.

Restricted access

Bruno Marrier, Yann Le Meur, Julien Robineau, Mathieu Lacome, Anthony Couderc, Christophe Hausswirth, Julien Piscione and Jean-Benoît Morin

Purpose:

To compare the sensitivity of a sprint vs a countermovement-jump (CMJ) test after an intense training session in international rugby sevens players, as well as analyze the effects of fatigue on sprint acceleration.

Methods:

Thirteen international rugby sevens players completed two 30-m sprints and a set of 4 repetitions of CMJ before and after a highly demanding rugby sevens training session.

Results:

Change in CMJ height was unclear (–3.6%; ±90% confidence limits 11.9%. Chances of a true positive/trivial/negative change: 24/10/66%), while a very likely small increase in 30-m sprint time was observed (1.0%; ±0.7%, 96/3/1%). A very likely small decrease in the maximum horizontal theoretical velocity (V0) (–2.4; ±1.8%, 1/4/95%) was observed. A very large correlation (r = –.79 ± .23) between the variations of V0 and 30-m-sprint performance was also observed. Changes in 30-m sprint time were negatively and very largely correlated with the distance covered above the maximal aerobic speed (r = –.71 ± .32).

Conclusions:

The CMJ test appears to be less sensitive than the sprint test, which casts doubts on the usefulness of a vertical-jump test in sports such as rugby that mainly involve horizontal motions. The decline in sprint performance relates more to a decrease in velocity than in force capability and is correlated with the distance covered at high intensity.

Open access

Walter Herzog

overstretching sarcomeres, disabling their active force capability, and leaving them damaged. This seemed a strange notion. The idea that muscles had evolved similarly in all species, with sarcomeres as their basic building blocks, and that these building blocks should be unstable and exhibit negative stiffness