Search Results

You are looking at 1 - 10 of 42 items for :

  • "force–time curve" x
Clear All
Restricted access

Timothy J. Suchomel and Christopher J. Sole

The force-production characteristics of 3 weight-lifting derivatives were examined by comparing the force–time curves of each exercise. Sixteen resistance-trained men performed repetitions of the hang power clean (HPC), jump shrug (JS), and hang high pull (HHP) on a force platform at several relative loads. Relative peak force (PFRel), relative impulse (IMPRel), peak rate of force development (PRFD), and time-normalized force–time curves of each exercise were compared. The JS produced greater PFRel than the HPC (P < .001, d = 1.38) and HHP (P < .001, d = 1.14), while there was no difference between the HPC and HHP (P = .338, d = 0.26). Similarly, the JS produced greater IMPRel than the HPC (P < .001, d = 0.52) and HHP (P = .019, d = 0.36). The HHP also produced greater IMPRel than the HPC (P = .040, d = 0.18). Finally, the JS produced greater PRFD than the HPC (P < .001, d = 0.73) and HHP (P = .001, d = 0.47), while there was no difference between the HPC and HHP (P = .192, d = 0.22). The HPC, JS, and HHP force–time profiles were similar during the first 75–80% of the movement; however, the JS produced markedly different force–time characteristics in the final 20–25% of the movement. The JS produced superior force-production characteristics, namely PFRel, IMPRel, and PRFD, as well as a unique force–time profile, compared with the HPC and HHP across several loads.

Restricted access

Christos Papadopoulos, Vasilios I. Kalapotharakos, Georgios Noussios, Konstantinos Meliggas and Evangelia Gantiraga

Objective:

To examine the effect of static stretching on maximal voluntary contraction (MVC) and isometric force-time curve characteristics of leg extensor muscles and EMG activity of rectus femoris (RF), biceps femoris (BF), and gastrocnemius (GA).

Design:

A within subjects experimental design.

Participants:

Ten healthy students were tested after a jogging and a jogging/stretch protocol.

Intervention:

The stretching protocol involved a 10 min jog and seven static stretching exercises.

Main Outcomes:

Measurements included MVC, time achieved to MVC (TMVC), force at 100ms (F100), index of relative force (IRF), index of rate of force development (IRFD), and average integrated EMG activity (AEMG).

Results:

There were slight but no significant changes in MVC (1%), TMVC (4.8%), F100 (7.8%), IRF (1%), and IRFD (3.5%) between measurement. A significant difference (21%; P < 0.05) in AEMG of RF was found.

Conclusions:

The present study indicated that a moderate volume of static stretching did not alter significantly the MVC and the isometric force-time curve characteristics. Neural inhibition, as it is reflected from AEMG of RF, did not alter MVC and isometric force-time curve characteristics.

Restricted access

Gemma N. Parry, Lee C. Herrington and Ian G. Horsley

plate with both hands at the same time (Figure  1 ). Performance variables (PF [in newtons]; mean force, MF [in newtons]; peak RFD [in newtons per second], flight time [in seconds], and impulse [in newton per second]) were taken from the force–time curve (Figure  2 ), and data were filtered using a

Restricted access

Beatriz B. Gomes, Nuno V. Ramos, Filipe A.V. Conceição, Ross H. Sanders, Mário A.P. Vaz and João Paulo Vilas-Boas

In sprint kayaking the role that paddling technique plays in optimizing paddle forces and resultant kayak kinematics is still unclear. The aim of this study was to analyze the magnitude and shape of the paddle force–time curve at different stroke rates, and their implications for kayak performance. Ten elite kayak paddlers (5 males and 5 females) were analyzed while performing 2000-m on-water trials, at 4 different paces (60, 80, and 100 strokes per minute, and race pace). The paddle and kayak were instrumented with strain gauges and accelerometers, respectively. For both sexes, the force–time curves were characterized at training pace by having a bell shape and at race pace by a first small peak, followed by a small decrease in force and then followed by a main plateau. The force profile, represented by the mean force/peak force ratio, became more rectangular with increasing stroke rate (F[3,40] = 7.87, P < .01). To obtain a rectangular shape to maximize performance, kayak paddlers should seek a stronger water phase with a rapid increase in force immediately after blade entry, and a quick exit before the force dropping far below the maximum force. This pattern should be sought when training at race pace and in competition.

Restricted access

Claire J. Brady, Andrew J. Harrison, Eamonn P. Flanagan, G. Gregory Haff and Thomas M. Comyns

Isometric tests such as the isometric midthigh pull (IMTP) and isometric squat (ISqT) allow the assessment of athletes’ strength qualities from a force–time curve and are used to assess skeletal muscle function. 1 , 2 Buckner et al 3 suggested that typical strength assessments such as 1

Restricted access

Claire J. Brady, Andrew J. Harrison, Eamonn P. Flanagan, G. Gregory Haff and Thomas M. Comyns

international-level sprinters. The authors did not measure 0- to 5-m time or fully diagnose the force–time curve, examining measures of strength such as RFD or impulse. Furthermore, no study has examined the relationship between ISqT force measures of strength and sprint performance in sprint athletes. There is

Restricted access

Thomas Dos’Santos, Paul A. Jones, Jonathan Kelly, John J. McMahon, Paul Comfort and Christopher Thomas

Purpose:

Skeletal-muscle function can be evaluated using force–times curves generated via the isometric midthigh pull (IMTP). Various sampling frequencies (500–1000 Hz) have been used for IMTP assessments; however, no research has investigated the influence of sampling frequency on IMTP kinetics. Therefore, the purpose of this study was to investigate the influence of sampling frequency on kinetic variables during the IMTP, including peak force, time-specific force values (100, 150, and 200 ms), and rate of force development (RFD) at 3 time bands (0–100, 0–150, 0–200 ms).

Methods:

Academy rugby league players (n = 30, age 17.5 ± 1.1 y, height 1.80 ± 0.06 m, mass 85.4 ± 10.3 kg) performed 3 IMTP trials on a force platform sampling at 2000 Hz, which was subsequently down-sampled to 1500, 1000, and 500 Hz for analysis.

Results:

Intraclass correlation coefficients (ICC) and coefficients of variation (CV) demonstrated high within-session reliability for all force and RFD variables across all sampling frequencies (ICC ≥ .80, CV ≤ 10.1%). Repeated-measures analysis of variance revealed no significant differences (P > .05, Cohen d ≤ 0.009) in kinetic variables between sampling frequencies. Overall, high reliability was observed across all sampling frequencies for all kinetic variables, with no significant differences (P > .05) for each kinetic variable across sampling frequencies.

Conclusions:

Practitioners and scientists may consider sampling as low as 500 Hz when measuring peak force, time-specific force values, and RFD at predetermined time bands during the IMTP for accurate and reliable data.

Restricted access

Liam P. Kilduff, Huw Bevan, Nick Owen, Mike I.C. Kingsley, Paul Bunce, Mark Bennett and Dan Cunningham

Purpose:

The ability to develop high levels of muscle power is considered an essential component of success in many sporting activities; however, the optimal load for the development of peak power during training remains controversial. The aim of the present study was to determine the optimal load required to observe peak power output (PPO) during the hang power clean in professional rugby players.

Methods:

Twelve professional rugby players performed hang power cleans on a portable force platform at loads of 30%, 40%, 50%, 60%, 70%, 80%, and 90% of their predetermined 1-repetition maximum (1-RM) in a randomized and balanced order.

Results:

Relative load had a significant effect on power output, with peak values being obtained at 80% of the subjects’ 1-RM (4466 ± 477 W; P < .001). There was no significant difference, however, between the power outputs at 50%, 60%, 70%, or 90% 1-RM compared with 80% 1-RM. Peak force was produced at 90% 1-RM with relative load having a significant effect on this variable; however, relative load had no effect on peak rate of force development or velocity during the hang power clean.

Conclusions:

The authors conclude that relative load has a significant effect on PPO during the hang power clean: Although PPO was obtained at 80% 1-RM, there was no significant difference between the loads ranging from 40% to 90% 1-RM. Individual determination of the optimal load for PPO is necessary in order to enhance individual training effects.

Restricted access

James J. Dowling and Lydia Vamos

Subjects performed maximum vertical jumps on a force platform to reveal whether resulting force-time curves could identify characteristics of good performances. Instantaneous power-time curves were also derived from the force-time curves. Eighteen temporal and kinetic variables were calculated from the force- and power-time curves and were compared with the takeoff velocities and maximum heights via correlation and multiple regression. The large variability in the patterns of force application between the subjects made it difficult to identify important characteristics of a good performance. Maximum positive power was found to be an excellent single predictor of height, but the best three-predictor model, not including maximum power, could only explain 66.2% of the height variance. A high maximum force (> 2 body weights) was found to be necessary but not sufficient for a good performance. Some subjects had low jumps in spite of generating high peak forces, which indicated that the pattern of force application was more important than strength.

Restricted access

David A. Aitken and Robert J. Neal

A system was developed to quantify the on-water forces, impulse, and power generated by a kayak paddlet. The system is lightweight (<1 kg), portable (i.e., it can be used in single [Kl], double [K2], and fours [K4] boats), and does not affect the integrity of either the kayak paddle or the boat. Changes in the strain on the kayak paddle were measured by force transducers attached to the shaft of the paddle, and these signals were then recorded on an FM tape recorder located in the boat. The data were then analyzed by the Kayak Data Acquisition and Analysis System software which graphically presented the paddlers' force time curve as well as a printed tabular report on the paddlers' average force, impulse, work, power, and the instantaneous boat velocity.