Search Results

You are looking at 1 - 10 of 29 items for :

  • "glucose ingestion" x
  • Refine by Access: All Content x
Clear All
Restricted access

Hedy C. Reynolds, Loren Cordain, Mary A. Harris, and Sheri Linnell

Thirteen trained runners were studied to determine whether postexercise glucose ingestion contributes to electrocardiogram (ECG) alterations by enhancing decreases in serum potassium (K+) concentrations. For the two randomly ordered trials, subjects ingested a 100 g (25% w/v glucose polymer) drink, either alone or with the addition of 3 g of potassium chloride (KCI), within 15 min following a 90-min run. ECG parameters, serum K+, and glucose concentrations were measured preexercise (Time 0), 2-3 min postexercise (Time 1), and 25 (Time 2) and 60 (Time 3) min postexercise. The data suggest that postexercise glucose ingestion may cause ECG changes that are not directly related to the return of K+ to muscle, and that these changes, although characteristic of hypokalemia, may be related to serum glucose excursions rather than to absolute levels of serum K+. The addition of KCl may have prevented these changes by delaying gastric emptying of glucose.

Restricted access

Michael C. Riddell, Oded Bar-Or, Beatriz V. Ayub, Randolph E. Calvert, and George J.F. Heigenhauser

There are currently no guidelines regarding the carbohydrate (CHO) dosage required to prevent exercise-induced hypoglycemia in children with insulin-dependent diabetes mellitus (IDDM). To prevent hypoglycemia by matching glucose ingestion with total-CHO utilization, 20 adolescents with IDDM attended 2 trials: control (CT; drinking water) and glucose (GT; drinking 6-8% glucose). Participants performed 60 min of moderate-intensity cycling 100 min after insulin injection and breakfast. CT's total-CHO utilization during exercise was determined using indirect calorimetry. In GT, participants ingested glucose in the amount equal to total CHO utilization in the CT. A total of 9 participants had BG <4.0 mmol/L in CT compared to 3 in GT (p < .05). In conclusion, glucose ingestion equal to total-CHO utilization attenuates the drop in blood glucose and reduces the likelihood of hypoglycemia during exercise in adolescents with IDDM.

Restricted access

Gareth J. Smith, Edward C. Rhodes, and Robert H. Langill

The purpose of this study was to determine if pre-exercise glucose ingestion would improve distance swimming performance. Additionally, pre-exercise glucose was provided at 2 different feeding intervals to investigate the affects of the timing of administration. Ten male triathletes (X¯±SD: age, 29.5 ± 5.0 years; V̇O2peak, 48.8 ± 3.2 ml · kg’1 · min’) swam 4000 m on 3 occasions following the consumption of either a 10% glucose solution 5 min prior to exercise (G5), a 10% glucose solution 35 min prior to exercise (G35), or a similar volume of placebo (PL). Despite a significant difference (p < ,01) in blood glucose concentration prior to exercise (X¯±SD in mmol · L ’: G" 8.4 ± 1.1 vs. G5 5.2 ± 0.5 or PL 5.3 ± 0.4), no significant differences were observed in total time (X¯±SD in minutes: G* 70.7 ± 7.6, Gs 70.1 ± 7.6. PL 71.9 ± 8.4). post-exercise blood glucose (X¯±SD inmmol · L−1: G35 5.1 ± 1.1, G5 5.1 ± 0.9, PL 5.3 ± 0.4), and average heart rate (X¯±SD in bpnv.G" 155.8±10.8, G5 153.6±12.6. PL 152.0± 12.5; p > .05). While not reaching statistical significance, glucose feedings did result in improved individual performance times, ranging from 24 s to 5 min in 8 of the 10 subjects compared to the placebo. These results were found despite significant differences in blood glucose between trials immediately prior to exercise.

Restricted access

Edwin Chong, Kym J. Guelfi, and Paul A. Fournier

This study investigated whether combined ingestion and mouth rinsing with a carbohydrate solution could improve maximal sprint cycling performance. Twelve competitive male cyclists ingested 100 ml of one of the following solutions 20 min before exercise in a randomized double-blinded counterbalanced order (a) 10% glucose solution, (b) 0.05% aspartame solution, (c) 9.0% maltodextrin solution, or (d) water as a control. Fifteen min after ingestion, repeated mouth rinsing was carried out with 11 × 15 ml bolus doses of the same solution at 30-s intervals. Each participant then performed a 45-s maximal sprint effort on a cycle ergometer. Peak power output was significantly higher in response to the glucose trial (1188 ± 166 W) compared with the water (1036 ± 177 W), aspartame (1088 ± 128 W) and maltodextrin (1024 ± 202W) trials by 14.7 ± 10.6, 9.2 ± 4.6 and 16.0 ± 6.0% respectively (p < .05). Mean power output during the sprint was significantly higher in the glucose trial compared with maltodextrin (p < .05) and also tended to be higher than the water trial (p = .075). Glucose and maltodextrin resulted in a similar increase in blood glucose, and the responses of blood lactate and pH to sprinting did not differ significantly between treatments (p > .05). These findings suggest that combining the ingestion of glucose with glucose mouth rinsing improves maximal sprint performance. This ergogenic effect is unlikely to be related to changes in blood glucose, sweetness, or energy sensing mechanisms in the gastrointestinal tract.

Restricted access

Owen Spendiff and Ian G. Campbell

Eight men with spinal cord injury ingested glucose (CHO) or placebo (PLA) 20-min prior to exercise. Participants performed arm crank ergometry for one-hour at 65% V̇O2peak, followed by a 20-min performance test in which athletes were asked to achieve their greatest possible distance. Physiological responses during the one-hour tests were similar between CHO and PLA trials. At the onset of exercise, the CHO trial blood glucose concentrations were higher than PLA (p < .05) but returned to resting values after 20-min exercise. Respiratory exchange ratio responses during the CHO trial were indicative of a higher rate of CHO oxidation (p < .05). A greater distance (km) was covered in the 20-min performance tests after CHO ingestion (p < .05). Results show preingestion of glucose improves endurance performance of wheelchair athletes.

Full access

Michael C. Riddell, Sara L. Partington, Nicole Stupka, David Armstrong, C. Rennie, and Mark A. Tarnopolsky

Compared to males, females oxidize proportionately more fat and less carbohydrate during endurance exercise performed in the fasted state. This study was designed to test the hypothesis that there may also be gender differences in exogenous carbohydrate (CHOexo) oxidation during exercise. Healthy, young males (n = 7) and females (n = 7) each completed 2 exercise trials (90 min cycle ergometry at 60% VO2peak), 1 week apart. Females were eumenorrheic and were tested in the midfollicular phase of their menstrual cycle. Subjects drank intermittently either 8% CHOexo (1 g glucose · kg · h−1) enriched with U-13C glucose or an artificially sweetened placebo during the trial. Whole-body substrate oxidation was determined from RER, urinary urea excretion, and the ratio of 13C:12C in expired gas during the final 60 min of exercise. During the placebo trial, fat oxidation was higher in females than in males (0.42 · 0.07 vs. 0.32 · 0.09 g · min−1 · kg LBM–1 × 10–2) at 30 min of exercise (p < .05). When averaged over the final 60 min of exercise, the relative proportions of fat, total carbohydrate, and protein were similar between groups. During CHOexo ingestion, both the ratio of 13C:12C in expired gas (p < .05) and the proportion of energy derived from CHOexo relative to LBM (p < .05) were higher in females compared to males at 75- and 90-min exercise. When averaged over the final 60 min of exercise, the percentage of CHOexo to the total energy contribution tended to be higher in females (14.3 · 1.2%) than in males (11.2 · 1.2%; p = .09). The reduction in endogenous CHO oxidation with CHOexo intake was also greater in females (12.9 · 3.1%) than in males (5.1 · 2.0%; p = .05). Compared to males, females may oxidize a greater relative proportion of CHOexo during endurance exercise which, in turn, may spare more endogenous fuel. Based on these observations, ingested carbohydrate may be a particularly beneficial source of fuel during endurance exercise for females.

Restricted access

Roy L.P.G. Jentjens and Asker E. Jeukendrup

Pre-exercise carbohydrate feeding may result in rebound hypoglycemia in some but not all athletes. The aim of the present study was to examine whether insulin sensitivity in athletes who develop rebound hypoglycemia is higher compared with those who do not show rebound hypoglycemia. Twenty trained athletes (V̇O2max of 61.8 ± 1.4 ml · kg−1 · min−1) performed an exercise trial on a cycle ergometer. Forty-five minutes before the start of exercise, subjects consumed 500 ml of a beverage containing 75 g of glucose. The exercise trial consisted of · 20 min of submaximal exercise at 74 ± 1% V̇O2max immediately followed by a time trial. Based upon the plasma glucose nadir reached during submaximal exercise, subjects were assigned to a Hypo group (<3.5 mmol/L) and a Non-hypo group (≥3.5 mmol/L). An oral glucose tolerance test was performed to obtain an index of insulin sensitivity (ISI). The plasma glucose nadir during submaximal exercise was significantly lower (p < .01) in the Hypo-group (n = 10) compared with the Non-hypo group (n = 10) (2.7 ± 0.1 vs. 4.1 ± 0.2 mmol/L, respectively). No difference was found in ISI between the Hypo and the Non-hypo group (3.7 ± 0.4 vs. 3.8 ± 0.5, respectively). The present results suggest that insulin sensitivity does not play an important role in the occurrence of rebound hypoglycemia.

Restricted access

Stephen H. Wong, Clyde Williams, and Neville Adams

This randomized, double-blind study examined the effects of rehydration per se and rehydration plus carbohydrate (CHO) ingestion during recovery (REC) on subsequent endurance running capacity. Nine men ran at 70% V̇O2max on a level treadmill for 90 min (Tl) on two occasions, followed by a 4 hour REC and a further exhaustive run at the same speed (T2). During the first 3 hours of REC, subjects drank either a 6.9% CHO-electrolyte solution (CE) or a CHO- and electrolyte-free sweetened placebo (PL) every 30 min. Volumes prescribed were 200% of the fluid lost after Tl. but the actual volume of fluid ingested during the REC ranged from 113–200% and 88.5–200% of the body mass lost for the CE and PL trials (NS). However, positive fluid balance was found in both trials after REC. During T2. run time was 24.3 ± 4.4 min longer in the CE trial (69.3 ± 5.5 vs. 45.0 ± 4.2 min; p < .05). Higher blood glucose concentrations were observed throughout REC in the CE trial. These results suggest that ingesting a CHO-electrolyte solution is more effective in restoring endurance capacity compared to the same large volume of placebo, even though complete rehydration was achieved in both trials.

Restricted access

Graeme I. Lancaster, Roy L.P.G. Jentjens, Luke Moseley, Asker E. Jeukendrup, and Michael Gleeson

The purpose of the present study was to examine the effect of pre-exercise carbohydrate (CHO) ingestion on circulating leukocyte numbers, plasma interleukin (IL)-6, plasma cortisol, and lipopolysaccharide (LPS)-stimulated neutrophil degranulation responses in moderately trained male cyclists who completed approximately 1-h of high-intensity cycling. The influence of the timing of pre-exercise CHO ingestion was investigated in 8 subjects who consumed 75 g CHO as a glucose solution at either 15 (–15 trial), or 75 (–75 trial) min before the onset of exercise. The influence of the amount of pre-exercise CHO ingestion was investigated in a further 10 subjects who consumed either 25 g or 200 g CHO as a glucose solution or a placebo 45 min before the onset of exercise. At the onset of exercise in the timing experiment, the plasma glucose concentration was significantly (p < .05) lower on the –75 trial compared with pre-drink values, and the plasma cortisol concentration and neutrophil to lymphocyte (N/L) ratio were significantly (p < .05) elevated in the post-exercise period. In the –15 trial, plasma glucose concentration was well maintained, and the plasma cortisol concentration and N/L ratio were not significantly elevated above resting levels. However, LPS-stimulated neutrophil degranulation was similar in the –15 and –75 trials. The amount of CHO ingested had no effect on the magnitude of the rise in the N/L ratio compared with placebo when consumed 45 min pre-exercise. Finally, although an exercise-induced increase in the plasma IL-6 concentration was observed, this effect was independent of pre-exercise CHO ingestion.

Restricted access

Jason A. Schisler and C. David Ianuzzo


This study determined if recreational type of endurance exercise is limited by a short-term fast, such as an overnight fast or benefited by a carbohydrate supplement prior to and during endurance exercise.


Six individuals ran at 70% VO2max for 90 min under three dietary conditions (fed, fasted for 16 to 18 h, fasted plus CHO).


RPE, RER, BG (blood glucose), and La (lactate) were similar between conditions throughout 90 min of exercise. FFA was higher (P ≤ 0.05) only in the fed and fasted groups after exercise.


The psychosomatic sensation, physiologic, and metabolic data all indicated that endurance exercise for up to 90 min for fit individuals is not limited by a short-term fast or enhanced by carbohydrate supplementation. These findings are of interest to persons who exercise to maintain and enhance health and are not concerned with elite performance.