Search Results

You are looking at 1 - 10 of 31 items for :

  • "glycemic index" x
Clear All
Restricted access

Carolyn M. Donaldson, Tracy L. Perry and Meredith C. Rose

The aim of this review is to provide an up-to-date summary of the evidence surrounding glycemic index (GI) and endurance performance. Athletes are commonly instructed to consume low-GI (LGI) carbohydrate (CHO) before exercise, but this recommendation appears to be based on the results of only a few studies, whereas others have found that the GI of CHO ingested before exercise has no impact on performance. Only 1 study was designed to directly investigate the impact of the GI of CHO ingested during exercise on endurance performance. Although the results indicate that GI is not as important as consuming CHO itself, more research in this area is clearly needed. Initial research investigating the impact of GI on postexercise recovery indicated consuming high-GI (HGI) CHO increased muscle glycogen resynthesis. However, recent studies indicate an interaction between LGI CHO and fat oxidation, which may play a role in enhancing performance in subsequent exercise. Despite the fact that the relationship between GI and sporting performance has been a topic of research for more than 15 yr, there is no consensus on whether consuming CHO of differing GI improves endurance performance. Until further well-designed research is carried out, athletes are encouraged to follow standard recommendations for CHO consumption and let practical issues and individual experience dictate the use of HGI or LGI meals and supplements before, during, and after exercise.

Restricted access

Ching-Lin Wu and Clyde Williams

This study investigated the effects of ingesting a low (LGI) or high (HGI) glyce-mic index carbohydrate (CHO) meal 3 h prior to exercise on endurance running capacity. Eight male recreational runners undertook two trials (LGI or HGI) which were randomized and separated by 7 d. After an overnight fast (12 h) the subjects ingested either a LGI or HGI meal 3 h prior to running at 70% VO2max until exhaustion. The meals contained 2 g/kg body mass CHO and were isocaloric and iso-macronutrient with calculated GI values 77 and 37 for the HGI and LGI respectively. The run times for the LGI and HGI trials were 108.8 ± 4.1 min and 101.4 ± 5.2 min respectively (P = 0.038). Fat oxidation rates were higher during exercise after the LGI meal than after the HGI meal (P < 0.05). In summary, ingestion of a LGI meal 3 h before exercise resulted in a greater endurance capacity than after the ingestion of a HGI meal.

Restricted access

Louise M. Burke, Gregory R. Collier and Mark Hargreaves

The glycemic index (GI) provides a way to rank foods rich in carbohydrate (CHO) according to the glucose response following their intake. Consumption of low-GI CHO-rich foods may attenuate the insulin-mediated metabolic disturbances associated with CHO intake in the hours prior to exercise, better maintaining CHO availability. However, there is insufficient evidence that athletes who consume a low-GI CHO-rich meal prior to a prolonged event will gain clear performance benefits. The ingestion of CHO during prolonged exercise promotes CHO availability and enhances endurance and performance, and athletes usually choose CHO-rich foods and drinks of moderate to high GI to achieve this goal. Moderate- and high-GI CHO choices appear to enhance glycogen storage after exercise compared with low-GI CHO-rich foods. However, the reason for this is not clear. A number of attributes of CHO-rich foods may be of value to the athlete including the nutritional value of the food or practical issues such as palatability, portability, cost, gastric comfort, or ease of preparation.

Restricted access

Emma Stevenson, Clyde Williams, Maria Nute, Peter Swaile and Monica Tsui

The present study investigated the effect of the glycemic index of an evening meal on responses to a standard high glycemic index (HGI) breakfast the following morning. The metabolic responses to exercise 3 h after breakfast were also investigated. Seven active males completed 2 trials. In each trial, participants were provided with an evening meal on day 1, which was composed of either HGI or LGI (high or low glycemic index) carbohydrates. On day 2, participants were provided with a standard HGI breakfast and then performed a 60 min run at 65% VO2max 3 h later. Plasma glucose and serum insulin concentrations following breakfast were higher in the HGI trial compared to the LGI trial (P < 0.05). During exercise, there were no differences in substrate utilization. The results suggest that consuming a single LGI evening meal can improve glucose tolerance at breakfast but the metabolic responses to subsequent exercise were not affected.

Restricted access

Emma Stevenson, Clyde Williams, Gareth McComb and Christopher Oram

This study examined the effects of the glycemic index (GI) of post-exercise carbohydrate (CHO) intake on endurance capacity the following day. Nine active males participated in 2 trials. On day 1, subjects ran for 90 min at 70% VO2max (R1). Thereafter, they were supplied with either a high GI (HGI) or low GI (LGI) CHO diet which provided 8 g CHO/kg body mass (BM). On day 2, after an overnight fast, subjects ran to exhaustion at 70% VO2max (R2). Time to exhaustion during R2 was longer in the LGI trial (108.9 ± 7.4 min) than in the HGI trial (96.9 ± 4.8 min) (P < 0.05). Fat oxidation rates and free fatty acid concentrations were higher in the LGI trial than the HGI trial (P < 0.05). The results suggest that the increased endurance capacity was largely a consequence of the increased fat oxidation following the LGI recovery diet.

Restricted access

Stephen H.S Wong, Oi Won Chan, Ya Jun Chen, Heng Long Hu, Ching Wan Lam and Pak Kwong Chung

Purpose:

This study examined the effect of consuming carbohydrate- (CHO) electrolyte solution on running performance after different-glycemic-index (GI) meals.

Methods:

Nine men completed 3 trials in a randomized counterbalanced order, with trials separated by at least 7 days. Two hours before the run after an overnight fast, each participant consumed a high-GI (GI = 83) or low-GI (GI = 36) CHO meal or low-energy sugar-free Jell-O (GI = 0, control). The 2 isocaloric GI meals provided 1.5 g available CHO/kg body mass. During each trial, 2 ml/kg body mass of a 6.6% CHO-electrolyte solution was provided immediately before exercise and every 2.5 km after the start of running. Each trial consisted of a 21-km performance run on a level treadmill. The participants were required to run at 70% VO2max during the first 5 km of the run. They then completed the remaining 16 km as fast as possible.

Results:

There was no difference in the time to complete the 21-km run (high-GI vs. low-GI vs. control: 91.1 ± 2.0 vs. 91.8 ± 2.2 vs. 92.9 ± 2.0 min, n.s.). There were no differences in total CHO and fat oxidation throughout the trials, despite differences in preexercise blood glucose, serum insulin, and serum free-fatty-acid concentrations.

Conclusion:

When a CHO-electrolyte solution is consumed during a 21-km run, the GI of the preexercise CHO meal makes no difference in running performance.

Restricted access

Laura J.S. Moore, Adrian W. Midgley, Gemma Thomas, Shane Thurlow and Lars R. McNaughton

Purpose:

The aim of this work was to determine whether the consumption of pre-exercise high– or low–glycemic index (GI) meals has a beneficial effect on time trial performance.

Methods:

Eight male cyclists were provided with either a high-GI or low-GI meal, providing 1 g·kg−1 body mass of carbohydrate, 45 min before performing a 40-km time trial on a Velotron cyclePro.

Results:

Time trial performance was significantly improved in the low-GI trial (92.5 ± 5.2 min) compared with the high-GI trial (95.6 ± 6.0 min) (P = .009). Blood glucose concentrations at the point of exhaustion were significantly higher in the low-GI trial (5.2± 0.6 mmol·L−1) compared with the high-GI trial (4.7 ± 0.7 mmol·L−1) (P = .001). There was no significant difference in estimated carbohydrate oxidation data between the low-GI (2.51 ± 1.74 g·min−1) and high-GI (2.18 ± 1.53 g·min−1) meals (P = .195). No significant difference in estimated fat oxidation was observed between the low-GI (0.15 ± 0.15 g·min−1) and high-GI (0.29 ± 0.18 g·min−1) diets (P = .83).

Conclusions:

The improvement in time trial performance for the low-GI trial may be associated with an increased availability of glucose to the working muscles, contributing additional carbohydrate for oxidation and possibly sparing limited muscle and liver glycogen stores.

Restricted access

Stephen R. Stannard, Martin W. Thompson and Janette C. Brand Miller

Consumption of low glycemic index (GI) foods before submaximal endurance exercise may be beneficial to performance. To test whether this may also be true for high intensity exercise. 10 trained cyclists began an incremental exercise test to exhaustion 65 min after consuming equal carbohydrate portions of glucose (HGI), pasta (LGI), and a noncarbohydrate control (PL). Time to fatigue did not differ significantly (p = 0.05) between treatments. Plasma glucose concentration was significantly lower after LGI vs. HGI from 15 to 45 min of rest postprandial. During exercise, plasma glucose concentration was significantly lower after HGI vs. LGI from 200 W until exhaustion. Plasma lactate concentration following HGI was significantly higher than PL from 30 min of rest postprandial through to the end of the 200-W workload. Plasma lactate concentration following LGI was significantly lower than after HGI from 45 min of rest postprandial through to the end of the 100-W workload. At higher exercise intensities, there was no significant difference in plasma lactate levels between treatments. These findings suggest that a high GI carbohydrate meal (1 g/kg body wt) 65 min prior to exercise decreases plasma glucose and increases plasma lactate levels compared to a low GI meal, but not enough to be detrimental to incremental exercise performance.

Restricted access

Jonathan P. Little, Philip D. Chilibeck, Dawn Ciona, Albert Vandenberg and Gordon A. Zello

The glycemic index (GI) of a pre exercise meal may affect substrate utilization and performance during continuous exercise.

Purpose:

To examine the effects of low- and high-GI foods on metabolism and performance during high-intensity, intermittent exercise.

Methods:

Seven male athletes participated in three experimental trials (low-GI, high-GI, and fasted control) separated by ~7 days. Foods were consumed 3 h before (~1.3 g·kg−1 carbohydrate) and halfway through (~0.2 g·kg−1 carbohydrate) 90 min of intermittent treadmill running designed to simulate the activity pattern of soccer. Expired gas was collected during exercise to estimate substrate oxidation. Performance was assessed by the distance covered on fve 1-min sprints during the last 15 min of exercise.

Results:

Respiratory exchange ratio was higher and fat oxidation lower during exercise in the high-GI condition compared with fasting (P < .05). The mean difference in total distance covered on the repeated sprint test between low GI and fasting (247 m; 90% confidence limits ±352 m) represented an 81% (likely, probable) chance that the low-GI condition improved performance over fasting. The mean difference between high GI and fasted control (223 m; ±385 m) represented a 76% (likely, probable) chance of improved performance. There were no differences between low and high GI.

Conclusions:

When compared with fasting, both low- and high-GI foods consumed 3 h before and halfway through prolonged, high-intensity intermittent exercise improved repeated sprint performance. High-GI foods impaired fat oxidation during exercise but the GI did not appear to influence high-intensity, intermittent exercise performance.

Restricted access

Jonathan P. Little, Philip D. Chilibeck, Dawn Ciona, Scott Forbes, Huw Rees, Albert Vandenberg and Gordon A. Zello

Consuming carbohydrate-rich meals before continuous endurance exercise improves performance, yet few studies have evaluated the ideal preexercise meal for high-intensity intermittent exercise, which is characteristic of many team sports. The authors’ purpose was to investigate the effects of low- and high-glycemic-index (GI) meals on metabolism and performance during high-intensity, intermittent exercise. Sixteen male participants completed three 90-min high-intensity intermittent running trials in a single-blinded random order, separated by ~7 d, while fasted (control) and 2 hr after ingesting an isoenergetic low-GI (lentil), or high-GI (potato and egg white) preexercise meal. Serum free fatty acids were higher and insulin lower throughout exercise in the fasted condition (p < .05), but there were no differences in blood glucose during exercise between conditions. Distance covered on a repeated-sprint test at the end of exercise was significantly greater in the low-GI and high-GI conditions than in the control (p < .05). Rating of perceived exertion was lower in the low-GI condition than in the control (p = .01). In a subsample of 5 participants, muscle glycogen availability was greater in the low- and high-GI conditions versus fasted control before the repeated-sprint test (p < .05), with no differences between low and high GI. When exogenous carbohydrates are not provided during exercise both low- and high-GI preexercise meals improve high-intensity, intermittent exercise performance, probably by increasing the availability of muscle glycogen. However, the GI does not influence markers of substrate oxidation during high-intensity, intermittent exercise.