Search Results

You are looking at 1 - 10 of 39 items for :

  • "glycogen resynthesis" x
Clear All
Restricted access

Jeffrey J. Zachwieja, David L. Costill and William J. Fink

To determine the effect of carbohydrate feeding on muscle glycogen resynthesis, 8 male cyclists pedaled for 2 hrs on a cycle ergometer at 70% of VO2max while consuming either a 10% carbohydrate solution (CHO) or a nonnutritive sweet placebo (No CHO). Muscle biopsies were obtained from the vastus lateralis prior to, immediately postexercise, and at 2,4, and 24 hrs of recovery. Blood samples were taken before and at the end of exercise, and at specified times during recovery. During both trials food intake was withheld for the first 2 hrs of recovery, but at 2 hrs postexercise a 24% carbohydrate solution was ingested. The rate of muscle glycogen resynthesis during the first 2 hrs of recovery was similar for the CHO and No CHO trials. Following ingestion of the 24% carbohydrate supplement, the rates of muscle glycogen resynthesis increased similarly in both trials. These similar rates of resynthesis following ingestion of the carbohydrate supplement were obtained despite significantly greater serum glucose and insulin levels during the No CHO trial. The results indicate that the carbohydrate feedings taken during exercise had little effect on postexercise muscle glycogen resynthesis.

Restricted access

Trevor L. Gillum, Charles L. Dumke and Brent C. Ruby

Purpose:

To describe the degrees of muscle-glycogen depletion and resynthesis in response to a half Ironman triathlon.

Methods:

One male subject (38 years of age) completed the Grand Columbian half Ironman triathlon (1.9-km swim, 90-km bike, 21.1-km run, Coulee City, Wash). Three muscle biopsies were obtained from his right vastus lateralis (prerace, immediately postrace, and 4 hours postrace). Prerace and postrace body weight were recorded, in addition to macronutrient consumption before, during, and after the race. Energy expenditure and whole-body substrate oxidation were estimated from linear regression established from laboratory trials (watts and run pace relative to VO2 and VCO2).

Results:

Body weight decreased 3.8 kg from prerace to postrace. Estimated CHO energy expenditure was 10,003 kJ for the bike segment and 5759 kJ for the run segment of the race. The athlete consumed 308 g of exogenous CHO (liquid and gel; 1.21 g CHO/min) during the race. Muscle glycogen decreased from 227.1 prerace to 38.6 mmol · kg wet weight−1 · h−1 postrace. During the 4 hours postrace, the athlete consumed a mixed diet (471 g CHO, 15 g fat, 64 g protein), which included liquid CHO sources and a meal. The calculated rate of muscle-glycogen resynthesis was 4.1 mmol · kg wet weight−1 · h−1.

Conclusion:

Completing a half Ironman triathlon depends on a high rate of muscle glycogenolysis, which demonstrates the importance of exogenous carbohydrate intake during the race. In addition, rates of muscle-glycogen resynthesis might be dampened by the eccentric damage resulting from the run portion of the race.

Restricted access

Jason R. Karp, Jeanne D. Johnston, Sandra Tecklenburg, Timothy D. Mickleborough, Alyce D. Fly and Joel M. Stager

Nine male, endurance-trained cyclists performed an interval workout followed by 4 h of recovery, and a subsequent endurance trial to exhaustion at 70% VO2max, on three separate days. Immediately following the first exercise bout and 2 h of recovery, subjects drank isovolumic amounts of chocolate milk, fluid replacement drink (FR), or carbohydrate replacement drink (CR), in a single-blind, randomized design. Carbohydrate content was equivalent for chocolate milk and CR. Time to exhaustion (TTE), average heart rate (HR), rating of perceived exertion (RPE), and total work (WT) for the endurance exercise were compared between trials. TTE and WT were significantly greater for chocolate milk and FR trials compared to CR trial. The results of this study suggest that chocolate milk is an effective recovery aid between two exhausting exercise bouts.

Restricted access

Laís Monteiro Rodrigues Loureiro, Caio Eduardo Gonçalves Reis and Teresa Helena Macedo da Costa

muscle glycogen resynthesis ( Taylor et al., 2011 ). Moreover, Pedersen et al. ( 2008 ) obtained higher rates of glycogen resynthesis in a real-life conditions experiment when athletes coingested caffeine and CHOs, compared with CHOs only ( Pedersen et al., 2008 ). There are some signaling proteins

Restricted access

Emma Stevenson, Clyde Williams and Helen Biscoe

This study investigated the metabolic responses to high glycemic index (HGI) or low glycemic index (LGI) meals consumed during recovery from prolonged exercise. Eight male, trained athletes undertook 2 trials. Following an overnight fast, subjects completed a 90-min run at 70% VO2max. Meals were provided 30 min and 2 h following cessation of exercise. The plasma glucose responses to both meals were greater in the HGI trial compared to the LGI trial (P < 0.05). Following breakfast, there were no differences in the serum insulin concentrations between the trials; however, following lunch, concentrations were higher in the HGI trial compared to the LGI trial (P < 0.05). This suggests that the glycemic index of the carbohydrates consumed during the immediate post-exercise period might not be important as long as sufficient carbohydrate is consumed. The high insulin concentrations following a HGI meal later in the recovery period could facilitate further muscle glycogen resynthesis.

Restricted access

Carolyn M. Donaldson, Tracy L. Perry and Meredith C. Rose

The aim of this review is to provide an up-to-date summary of the evidence surrounding glycemic index (GI) and endurance performance. Athletes are commonly instructed to consume low-GI (LGI) carbohydrate (CHO) before exercise, but this recommendation appears to be based on the results of only a few studies, whereas others have found that the GI of CHO ingested before exercise has no impact on performance. Only 1 study was designed to directly investigate the impact of the GI of CHO ingested during exercise on endurance performance. Although the results indicate that GI is not as important as consuming CHO itself, more research in this area is clearly needed. Initial research investigating the impact of GI on postexercise recovery indicated consuming high-GI (HGI) CHO increased muscle glycogen resynthesis. However, recent studies indicate an interaction between LGI CHO and fat oxidation, which may play a role in enhancing performance in subsequent exercise. Despite the fact that the relationship between GI and sporting performance has been a topic of research for more than 15 yr, there is no consensus on whether consuming CHO of differing GI improves endurance performance. Until further well-designed research is carried out, athletes are encouraged to follow standard recommendations for CHO consumption and let practical issues and individual experience dictate the use of HGI or LGI meals and supplements before, during, and after exercise.

Restricted access

Liam Anderson, Robert J. Naughton, Graeme L. Close, Rocco Di Michele, Ryland Morgans, Barry Drust and James P. Morton

The daily distribution of macronutrient intake can modulate aspects of training adaptations, performance and recovery. We therefore assessed the daily distribution of macronutrient intake (as assessed using food diaries supported by the remote food photographic method and 24-hr recalls) of professional soccer players (n = 6) of the English Premier League during a 7-day period consisting of two match days and five training days. On match days, average carbohydrate (CHO) content of the prematch (<1.5 g·kg-1 body mass) and postmatch (1 g·kg-1 body mass) meals (in recovery from an evening kick-off) were similar (p > .05) though such intakes were lower than contemporary guidelines considered optimal for prematch CHO intake and postmatch recovery. On training days, we observed a skewed and hierarchical approach (p < .05 for all comparisons) to protein feeding such that dinner (0.8 g·kg-1)>lunch (0.6 g·kg-1)>breakfast (0.3 g·kg-1)>evening snacks (0.1 g·kg-1). We conclude players may benefit from consuming greater amounts of CHO in both the prematch and postmatch meals so as to increase CHO availability and maximize rates of muscle glycogen resynthesis, respectively. Furthermore, attention should also be given to ensuring even daily distribution of protein intake so as to potentially promote components of training adaptation.

Restricted access

Jill A. Tanaka, Hirofumi Tanaka and William Landis

To determine the extent to which well-trained endurance athletes practice the dietary recommendations for maximizing muscle glycogen resynthesis, collegiate cross-country runners (14 males and 10 females) kept 4-day dietary and activity records during a training period and a competitive period in the regular cross-country season. The mean running mileages for men and women were 16.0 ± 1.0 and 10.7 ± 0.6 km/day during the training period and 14.6 ± 0.8 and 8.7 ± 0.5 km/day during the competitive period, respectively. Males reported adequate energy intake in both phases, whereas females fell short of the RDA. However, the percentage of calories from carbohydrate was found to be inadequate (< 60%) for male runners. Although female runners derived 65-67% of calories from carbohydrate, the daily amount of carbohydrate taken was insufficient (< 10 g/kg body weight). Carbohydrate was ingested immediately postexercise approximately 50% of the time or less, with even far less taken in suggested quantities (−1 g carbohydrate/kg body weight). There were no significant differences in dietary trends between training and competitive phases. The results suggest that these endurance athletes were not practicing the recommended feeding regimen for optimal muscle glycogen restoration.

Restricted access

Janet R. Wojcik, Janet Walberg-Rankin, Lucille L. Smith and F.C. Gwazdauskas

This study examined effects of carbohydrate (CHO), milk-based carbohydrate-protein (CHO-PRO), or placebo (P) beverages on glycogen resynthesis, muscle damage, inflammation, and muscle function following eccentric resistance exercise. Untrained males performed a cycling exercise to reduce muscle glycogen 12 hours prior to performance of 100 eccentric quadriceps contractions at 120% of 1-RM (day 1) and drank CHO (n = 8), CHO-PRO (n = 9; 5 kcal/kg), or P (n = 9) immediately and 2 hours post-exercise. At 3 hours post-eccentric exercise, serum insulin was four times higher for CHO-PRO and CHO than P (p < .05). Serum creatine kinase (CK) increased for all groups in the 6 hours post-eccentric exercise (p < .01), with the increase tending to be lowest for CHO-PRO (p < .08) during this period. Glycogen was low post-exercise (33 ± 3.7 mmol/kg ww), increased 225% at 24 hours, and tripled by 72 hours, with no group differences. The eccentric exercise increased muscle protein breakdown as indicated by urinary 3-methylhistidine and increased IL-6 with no effect of beverage. Quadriceps isokinetic peak torque was depressed similarly for all groups by 24% 24 hours post-exercise and remained 21 % lower at 72 hours (p < .01). In summary, there were no influences of any post-exercise beverage on muscle glycogen replacement, inflammation, or muscle function.

Restricted access

Kelsey H. Fisher-Wellman and Richard J. Bloomer

Background:

Carbohydrate powder in the form of maltodextrin is widely used by athletes for postexercise glycogen resynthesis. There is some concern that such a practice may be associated with a postprandial rise in reactive oxygen and nitrogen species production and subsequent oxidation of macromolecules. This is largely supported by findings of increased oxidative-stress biomarkers and associated endothelial dysfunction after intake of dextrose.

Purpose:

To compare the effects of isocaloric dextrose and maltodextrin meals on blood glucose, triglycerides (TAG), and oxidative-stress biomarkers in a sample of young healthy men.

Methods:

10 men consumed isocaloric dextrose and maltodextrin powder drinks (2.25 g/kg) in a random-order, crossover design. Blood samples were collected premeal (fasting) and at 1, 2, 4, and 6 hr postmeal and assayed for glucose, TAG, malondialdehyde, hydrogen peroxide, nitrate/nitrite, and Trolox-equivalent antioxidant capacity.

Results:

Significant meal effects were noted for glucose total area under the curve (p = .004), with values higher for the dextrose meal. No other statistically significant meal effects were noted (p > .05). With respect to the 2 (meal) × 5 (time) ANOVA, no significant interaction, time, or meal effects were noted for any variable (p > .05), with the exception of glucose, for which a main effect for both meal (p < .0001) and time (p = .0002) was noted.

Conclusions:

These data indicate that carbohydrate meals, consumed as either dextrose or maltodextrin, pose little postprandial oxidative insult to young, healthy men. As such, there should be minimal concern over such feedings, even at high dosages, assuming adequate glucose metabolism.