Search Results

You are looking at 1 - 5 of 5 items for :

  • "glycogen sparing" x
Clear All
Restricted access

Kimberly M. White, Roseann M. Lyle, Michael G. Flynn, Dorothy Teegarden and Shawn S. Donkin

The purpose of this study was to test the effect of acute dairy calcium intake on exercise energy metabolism and endurance performance. Trained female runners completed two trials. Each trial consisted of a 90-min glycogen depletion run followed by a self-paced 10K time trial, conducted one hour after consumption of a high dairy (500 mg Ca+2) or low dairy (80 mg Ca+2) meal. During the 90-min run, blood samples and respiratory gases were collected. No treatment main effects of acute dairy intake were found for respiratory exchange ratio (RER), calculated fat oxidation, lactate, glycerol, or 10K time. Following this protocol, acute dairy calcium intake did not alter fat utilization or endurance performance in trained female runners.

Restricted access

L. Christopher Eschbach, Michael J. Webster, Joseph C. Boyd, Patrick D. McArthur and Tammy K. Evetovich

It has been suggested that Eleutherococcus senticosus (ES). also known as Siberian ginseng or ciwuija. increases fat utilization in humans. The purpose of this study was to examine the physiological responses to supplementation with ES in endurance cyclists. Using arandomized. double-blind crossover design. 9 highly-trained men (28 ± 2 years. V̇O2max 57.3±2.0 ml · kg−1 · min−1) cycled for 120 min at 60% V̇O2max followed by a simulated 10-km lime trial. Diet was controlled, and ES (1,200 mg · day−1) or a placebo (P) were administered for 7 days prior to each of the two trials. Oxygen consumption, respiratory exchange ratio, and heart rate were recorded every 30 min, and rating of perceived exertion. plasma [lactate], and plasma [glucose j were recorded every 20 min during the 120 min of steady state cycling. There were no significant differences (p > .05) between the ES and P groups at any steady-state time interval or during the cycling time trial (ES = 18.10 ± 0.42, P = 17.83 ± 0.47 min). In contrast with previous reports, the results of this study suggest that ES supplementation does not alter steady-state substrate utilization or 10-km cycling performance time.

Restricted access

John A. Hawley, Steven C. Dennis and Timothy D. Noakes

Soccer requires field players to exercise repetitively at high intensities for the duration of a game, which can result in marked muscle glycogen depletion and hypoglycemia. A soccer match places heavy demands on endogenous muscle and liver glycogen stores and fluid reserves, which must be rapidly replenished when players complete several matches within a brief period of time. Low concentrations of muscle glycogen have been reported in soccer players before a game, and daily carbohydrate (CHO) intakes are often insufficient to replenish muscle glycogen stores, CHO supplementation during soccer matches has been found to result in muscle glycogen sparing (39%), greater second-half running distances, and more goals being scored with less conceded, when compared to consumption of water. Thus, CHO supplementation has been recommended prior to, during, and after matches. In contrast, there is currently insufficient evidence to recommend without reservation the addition of electrolytes to a beverage for ingestion by players during a game resulting in sweat losses of < 4% of body weight.

Restricted access

Harry E. Routledge, Jill J. Leckey, Matt J. Lee, Andrew Garnham, Stuart Graham, Darren Burgess, Louise M. Burke, Robert M. Erskine, Graeme L. Close and James P. Morton

capacity, 12 it is noteworthy that Player B also consumed an additional 88 g of CHO during match play. As such, differences in glycogen use between players may also be due, in part, to a potential muscle glycogen sparing effect of CHO feeding, an effect that has been reported previously in m. vastus

Restricted access

Mark Glaister, Colin Towey, Owen Jeffries, Daniel Muniz-Pumares, Paul Foley and Gillian McInnes

exercise. 1 Although early research supported a glycogen-sparing mode of action, the key mechanism by which caffeine is now believed to enhance athletic performance is by the antagonism of adenosine receptors. 1 , 2 Given the abundance of adenosine receptors and their ability to elicit multiple responses