Search Results

You are looking at 1 - 6 of 6 items for :

  • "granulocytes" x
Clear All
Restricted access

Manuela Konrad, David C. Nieman, Dru A. Henson, Krista M. Kennerly, Fuxia Jin and Sandra J. Wallner-Liebmann

This study tested the acute anti-inflammatory and immune-modulating influence of a quercetin-based supplement consumed by endurance athletes 15 min before an intense 2-hr run. In this randomized, crossover study, 20 runners (11 men, 9 women, age 38.4 ± 2.1 yr) completed two 2-hr treadmill runs at 70% VO2max (3 wk apart). Subjects ingested either 4 quercetin-based chews (Q-chew) or placebo chews (PL) 15 min before the runs. The 4 Q-chews provided 1,000 mg quercetin, 120 mg epigallocatechin 3-gallate, 400 mg isoquercetin, 400 mg each eicosapentaenoic acid and docosahexaenoic acid, 1,000 mg vitamin C, and 40 mg niacinamide. Subjects provided blood samples 30 min before, immediately after, and 1 hr postexercise and were analyzed for plasma quercetin, total blood leukocytes (WBC), C-reactive protein (CRP), 9 cytokines (IL-6, TNFα, GM-CSF, IFNγ, IL-1β, IL-2, IL-8, IL-10, and IL-12p70), granulocyte (GR) and monocyte (MO) phagocytosis (PHAG), and oxidative-burst activity (OBA). Plasma quercetin increased from 80.0 ± 26.0 μg/L to 6,337 ± 414 μg/L immediately postexercise and 4,324 ± 310 μg/L 1 hr postexercise after ingestion of Q-chews, compared with no change in PL (p < .001). Exercise caused significant increases in, CRP, GM-CSF, IL-10, IL-1β, IL-2, IL-6, IL-8, TNFα, GR-PHAG, and MO-PHAG and decreases in GR-OBA and MO-OBA, but no differences in the pattern of change were measured between Q-chew and PL trials. Acute ingestion of Q-chews 15 min before heavy exertion caused a strong increase in plasma quercetin levels but did not counter postexercise inflammation or immune changes relative to placebo.

Restricted access

Jonathan Peake, Jeremiah J. Peiffer, Chris R. Abbiss, Kazunori Nosaka, Paul B. Laursen and Katsuhiko Suzuki

Purpose:

Heat stress might attenuate the effects of carbohydrate on immunoendocrine responses to exercise by increasing endogenous glucose production and reducing the rate of exogenous carbohydrate oxidation. The authors compared the efficacy of carbohydrate consumption on immune responses to exercise in temperate vs. hot conditions.

Methods:

Ten male cyclists exercised on 2 separate occasions in temperate (18.1 ± 0.4 °C, 58% ± 8% relative humidity) and on another 2 occasions in hot conditions (32.2 ± 0.7 °C, 55% ± 2% relative humidity). On each occasion, the cyclists exercised in a fed state for 90 min at ~60% VO2max and then completed a 16.1-km time trial. Every 15 min during the first 90 min of exercise, they consumed 0.24 g/kg body mass of a carbohydrate or placebo gel.

Results:

Neutrophil counts increased during exercise in all trials (p < .05) and were significantly lower (40%, p = .006) after the carbohydrate than after the placebo trial in 32 °C. The concentrations of serum interleukin (IL)-6, IL-8, and IL-10 and plasma granulocyte-colony-stimulating factor, myeloperoxidase, and calprotectin also increased during exercise in all trials but did not differ significantly between the carbohydrate and placebo trials. Plasma norepinephrine concentration increased during exercise in all trials and was significantly higher (50%, p = .01) after the carbohydrate vs. the placebo trial in 32 °C.

Conclusion:

Carbohydrate ingestion attenuated neutrophil counts during exercise in hot conditions, whereas it had no effect on any other immune variables in either temperate or hot conditions.

Restricted access

Malcolm T. Whitehead, Tyler D. Martin, Timothy P. Scheett and Michael J. Webster

The purpose of this investigation was to determine whether echinacea supplementation results in alterations of erythroid growth factors and erythropoietic status. Twenty-four men age 24.9 ± 4.2 y, height 1.7 ± 0.8 m, weight 87.9 ± 14.6 kg, and 19.3% ± 6.5% body fat were grouped using a double-blind design and self-administered an 8000-mg/d dose of either echinacea (ECH) or placebo (PLA) in 5 × 400 mg × 4 times/d for 28 d. Blood samples were collected and analyzed for red blood cells (RBCs), hematocrit (Hct), hemoglobin (Hb), mean corpuscular volume, mean corpuscular hemoglobin content, prostaglandin E2, ferritin, erythropoietin (EPO), interleukin 3 (IL-3), and granulocyte-macrophage-colony-stimulating factor using automated flow cytometry and ELISA. ANOVA was used to determine significant differences (P ≤ 0.05). EPO was greater (P < 0.001) in ECH at Days 7, 14, and 21 and refected a 44%, 63%, and 36% increase, respectively. IL-3 was greater (P = 0.011) in ECH at Days 14 and 21, which indicated a 65% and 73% increase, respectively. These data indicate that ECH supplementation resulted in an increase in EPO and IL-3 but did not significantly alter RBCs, Hb, or Hct.

Restricted access

David C. Nieman, Courtney L. Capps, Christopher R. Capps, Zack L. Shue and Jennifer E. McBride

analysis. Total plasma concentrations of six inflammatory cytokines (monocyte chemoattractant protein-1, interleukin (IL)-1 receptor antagonist, granulocyte colony-stimulating factor, IL-6, IL-8, and IL-10) were determined using an electrochemiluminescence-based solid-phase sandwich immunoassay (Meso Scale

Restricted access

Bruno P. Melo, Débora A. Guariglia, Rafael E. Pedro, Dennis A. Bertolini, Solange de Paula Ramos, Sidney B. Peres and Solange M. Franzói de Moraes

factor-alpha, granulocyte-macrophage colony-stimulating factor, interleukins 1 beta (IL-1β), 2 (IL-2), 4 (IL-4), 5 (IL-5), 6 (IL-6), 8 (IL-8), and 10 (IL-10) were quantified by flow cytometry using multiplex bead immunoassay (Life Technologies Corp, Frederick, MD) and assessed in Luminex-Magpix ® 200TR

Restricted access

Cordial M. Gillette and Mark A. Merrick

secondary injury through lowering the metabolic rate, microcirculatory changes, and granulocyte activity. 1 , 6 – 8 Although cryotherapy is accepted in clinical practice as a key component in the treatment of musculoskeletal injuries, evidence is lacking to provide specific guidelines concerning treatment