Search Results

You are looking at 1 - 10 of 42 items for :

  • "heat acclimatization" x
  • All content x
Clear All
Restricted access

Christopher Byrne and Jason K.W. Lee

proposition, as this would provide useful data on heat strain during training and competition, heat acclimatization status, and the effectiveness of interventions aimed at mitigating heat strain. A potential candidate is the physiological strain index (PSI) introduced by Moran et al 2 in 1998 as a novel and

Restricted access

Margaret C. Morrissey, Michael R. Szymanski, Andrew J. Grundstein, and Douglas J. Casa

condition. Many EHS-prevention strategies have been adopted to enhance exercise heat tolerance, but not necessarily to decrease the incidence of EHS ( Alhadad, Tan, & Lee, 2019 ). Some examples of common strategies to enhance exercise heat tolerance include heat acclimatization (HA), hydration, work

Restricted access

Scott J. Montain, Ronald J. Maughan, and Michael N. Sawka

Restricted access

Douglas J. Casa, Yuri Hosokawa, Luke N. Belval, William M. Adams, and Rebecca L. Stearns

Exertional heat stroke (EHS) is among the leading causes of sudden death during sport and physical activity. However, previous research has shown that EHS is 100% survivable when rapidly recognized and appropriate treatment is provided. Establishing policies to address issues related to the prevention and treatment of EHS, including heat acclimatization, environment-based activity modification, body temperature assessment using rectal thermometry, and immediate, onsite treatment using cold-water immersion attenuates the risk of EHS mortality and morbidity. This article provides an overview of the current evidence regarding EHS prevention and management. The transfer of scientific knowledge to clinical practice has shown great success for saving EHS patients. Further efforts are needed to implement evidence-based policies to not only mitigate EHS fatality but also to reduce the overall incidence of EHS.

Open access

Amelia J. Carr, Philo U. Saunders, Laura A. Garvican-Lewis, and Brent S. Vallance

performance. 2 Prior to competing in hot environments, athletes’ preparation strategies may include, depending on their competition schedule and available facilities, heat acclimatization (living and training in a natural similar environment to the competition) 8 or acclimation (repeated heat exposures

Restricted access

Sebastien Racinais, Martin Buchheit, Johann Bilsborough, Pitre C. Bourdon, Justin Cordy, and Aaron J. Coutts


To examine the physiological and performance responses to a heat-acclimatization camp in highly trained professional team-sport athletes.


Eighteen male Australian Rules Football players trained for 2 wk in hot ambient conditions (31–33°C, humidity 34–50%). Players performed a laboratory-based heat-response test (24-min walk + 24 min seated; 44°C), a YoYo Intermittent Recovery Level 2 Test (YoYoIR2; indoor, temperate environment, 23°C) and standardized training drills (STD; outdoor, hot environment, 32°C) at the beginning and end of the camp.


The heat-response test showed partial heat acclimatization (eg, a decrease in skin temperature, heart rate, and sweat sodium concentration, P < .05). In addition, plasma volume (PV, CO rebreathing, +2.68 [0.83; 4.53] mL/kg) and distance covered during both the YoYoIR2 (+311 [260; 361] m) and the STD (+45.6 [13.9; 77.4] m) increased postcamp (P < .01). None of the performance changes showed clear correlations with PV changes (r < .24), but the improvements in running STD distance in hot environment were correlated with changes in hematocrit during the heat-response test (r = –.52, 90%CI [–.77; –.12]). There was no clear correlation between the performance improvements in temperate and hot ambient conditions (r < .26).


Running performance in both hot and temperate environments was improved after a football training camp in hot ambient conditions that stimulated heat acclimatization. However, physiological and performance responses were highly individual, and the absence of correlations between physical-performance improvements in hot and temperate environments suggests that their physiological basis might differ.

Restricted access . Heat Illness and Heat Acclimatization Resources Help your athletes beat the heat as fall sports ramp up. NATA offers many resources related to heat illness and heat acclimatization. You can find all those resources and more at . Apply for State

Restricted access

Cyril Schmit, Rob Duffield, Christophe Hausswirth, Aaron J. Coutts, and Yann Le Meur


To describe the effect of the initial perceptual experience from heat familiarization on the pacing profile during a freepaced endurance time trial (TT) compared with temperate conditions.


Two groups of well-trained triathletes performed two 20-km TTs in either hot (35°C and 50% relative humidity [RH], n = 12) or temperate (21°C and 50% RH, n = 22) conditions, after standardization of training for each group before both trials. To ensure no physiological acclimation differences between conditions, the TTs for both groups were separated by 11 ± 4 d.


Performance improvement in the heat (11 ± 24 W) from the 1st to 2nd trial appeared comparable to that in temperate conditions (8 ± 14 W, P = .67). However, the specific alteration in pacing profile in the heat was markedly different than temperate conditions, with a change from “positive” to an “even” pacing strategy.


Altered perceptions of heat during heat familiarization, rather than physiological acclimatization per se, may mediate initial changes in pacing and TT performance in the heat. These results highlight the need for athletes without time for sufficient heat acclimatization to familiarize themselves with hot conditions to reduce the uncertainty from behavior-based outcomes that may impede performance.

Restricted access

Martin Buchheit, Yannick Cholley, and Philippe Lambert


To examine in elite soccer players after traveling across 6 time zones some psychometric and physiological responses to a competitive camp in the heat.


Data from 12 elite professional players (24.6 ± 5.3 y) were analyzed. They participated in an 8-d preseason summer training camp in Asia (heat index 34.9°C ± 2.4°C). Players’ activity was collected during all training sessions and the friendly game using 15-Hz GPS. Perceived training/playing load was estimated using session rating of perceived exertion (RPE) and training/match duration. Psychometric measures of wellness were collected on awakening before, during, and after the camp using simple questionnaires. Heart-rate (HR) response to a submaximal 4-min run (12 km/h) and the ratio between velocity and force-load (accelerometer-derived measure, a marker of neuromuscular efficiency) response to four ~60-m runs (22–24 km/h) were collected before, at the end of, and after the camp.


After a large increase, the RPE:m/min ratio decreased substantially throughout the camp. There were possible small increases in perceived fatigue and small decreases in subjective sleep quality on the 6th day. There were also likely moderate (~3%) decreases in HR response to the submaximal run, both at the end of and after the camp, which were contemporary to possible small (~8%) and most likely moderate (~19%) improvements in neuromuscular efficiency, respectively.


Despite transient increases in fatigue and reduced subjective sleep quality by the end of the camp, these elite players showed clear signs of heat acclimatization that were associated with improved cardiovascular fitness and neuromuscular running efficiency.

Restricted access

William M. Adams, Yuri Hosokawa, Robert A. Huggins, Stephanie M. Mazerolle, and Douglas J. Casa


Evidence-based best practices for the recognition and treatment of exertional heat stroke (EHS) indicate that rectal thermometry and immediate, aggressive cooling via cold-water immersion ensure survival from this medical condition. However, little is known about the recovery, medical follow-up, and return to activity after an athlete has suffered EHS.


To highlight the transfer of evidenced-based research into clinical practice by chronicling the treatment, recovery, and return to activity of a runner who suffered an EHS during a warm-weather road race.


Case study.


Warm-weather road race.


53-y-old recreationally active man.


A runner’s treatment, recovery, and return to activity from EHS and 2014 Falmouth Road Race performance.

Main Outcomes:

Runner’s perceptions and experiences with EHS, body temperature, heart rate, hydration status, exercise intensity.


The runner successfully completed the 2014 Falmouth Road Race without incident of EHS. Four dominant themes emerged from the data: predisposing factors, ideal treatment, lack of medical follow-up, and patient education. The first theme identified 3 predisposing factors that contributed to the runner’s EHS: hydration, sleep loss, and lack of heat acclimatization. The runner received ideal treatment using evidence-based best practices. A lack of long-term medical care following the EHS with no guidance on the runner’s return to full activity was observed. The runner knew very little about EHS before the 2013 race, which drove him to seek knowledge as to why he suffered EHS. Using this newly learned information, he successfully completed the 2014 Falmouth Road Race without incident.


This case supports prior literature examining the factors that predispose individuals to EHS. Although evidence-based best practices regarding prompt recognition and treatment of EHS ensure survival, this case highlights the lack of medical follow-up and physician-guided return to activity after EHS.