Search Results

You are looking at 1 - 10 of 75 items for :

  • "human gait" x
  • All content x
Clear All
Restricted access

Elizabeth J. Bradshaw and W.A. Sparrow

The study examined adjustments to gait when positioning the foot within a narrow target area at the end of an approach or “run-up” similar to the take-off board in long jumping. In one task, participants (n = 24) sprinted toward and placed their foot within targets of four different lengths for 8-m and 12-m approach distances while “running through” the target. In a second task, participants (n = 12) sprinted toward and stopped with both feet in the target area. Infra-red timing lights were placed along the approach strip to measure movement times, with a camera positioned to view the whole approach to measure the total number of steps, and a second camera placed to view the final stride, which was analyzed using an in-house digitizing system to calculate the final stride characteristics. In the run-through task, a speed-accuracy trade-off showing a linear relationship (r = 0.976, p < .05) between target length and approach time was found for the 8-m amplitude. An accelerative sub-movement and a later targeting or “homing-in” sub-movement were found in the approach kinematics for both amplitudes. Final stride duration increased, and final stride velocity decreased with a decrease in target length.

Restricted access

Andrea N. Lay, Chris J. Hass, D. Webb Smith, and Robert J. Gregor

Sloped walking surfaces provide a unique environment for examining the bio-mechanics and neural control of locomotion. While sloped surfaces have been used in a variety of studies in recent years, the current literature provides little if any discussion of the integrity, i.e., validity, of the systems used to collect data. The goal of this study was to develop and characterize a testing system capable of evaluating the kinetics of human locomotion on sloped surfaces. A ramped walkway system with an embedded force plate was constructed and stabilized. Center of pressure and reaction force data from the force plate were evaluated at 6 ramp grades (0, 5, 15, 25, 35, and 39%). Ground reaction force data at 0% grade were effectively the same as data from the same force plate when mounted in the ground and were well within the range of intrasubject variability. Collectively, data from all tests demonstrate the fidelity of this ramp system and suggest it can be used to evaluate human locomotion over a range of slope intensities.

Restricted access

Elizabeth J. Bradshaw and W.A. Sparrow

Adjustments to gait were examined when positioning the foot within a narrow target at the end of an approach for two impact conditions, hard and soft. Participants (6 M, 6 F) ran toward a target of three lengths along a 10-m walkway consisting of two marker strips with alternating black and white 0.5-m markings. Five trials were conducted for each target length and impact task, with trials block randomized between the 6 participants of each gender. A 50Hz digital video camera panned and filmed each trial from an elevated position adjacent to the walkway. Video footage was digitized to deduce the gait characteristics. A linear speed/accuracy tradeoff between target length and approach time was found for both impact tasks (hard, r = 0.99, p < 0.01; soft, r = 0.96, p < 0.05). For the hard-impact task, visual control time increased linearly (r = 0.99, p < 0.05) when whole-body approach velocity decreased. Visual control time was unaffected by whole-body approach velocity in the soft-impact task. A constant tau-margin of 1.08 describes the onset of visual control when approaching a target while running, with the control of braking during visual control described by a tau-dot of –0.85. Further research is needed to examine the control of braking in different targeting tasks.

Restricted access

Anne-Marie Heugas and Isabelle A. Siegler

.J. ( 2002 ). Are transitions in human gait determined by mechanical, kinetic or energetic factors? Human Movement Science, 21 , 785 – 805 . PubMed ID: 12620720 doi:10.1016/S0167-9457(02)00180-X 10.1016/S0167-9457(02)00180-X Riley , P.O. , Della Croce , U. , & Kerrigan , D.C. ( 2001

Restricted access

Yoav Gimmon, Hisham Rashad, Ilan Kurz, Meir Plotnik, Raziel Riemer, Ronen Debi, Amir Shapiro, and Itshak Melzer

generator from cats to humans . Gait & Posture, 7 , 131 – 141 . PubMed ID: 10200383 doi:10.1016/S0966-6362(97)00042-8 10.1016/S0966-6362(97)00042-8 England , S.A. , & Granata , K.P. ( 2007 ). The influence of gait speed on local dynamic stability of walking . Gait & Posture, 25 , 172 – 178

Restricted access

Timothy D. Coleman, Haley J. Lawrence, and W. Lee Childers

This research tested a reproducible uneven walkway designed to destabilize human gait. Ten participants walked 30 times over even and uneven (7.3 × .08 m, sequentially-placed wooden blocks in a rotating pattern, 1-cm thick rubber mat) walkways. A full-body marker set and 8-camera motion capture system recorded limb kinematics. MatLab 2013b was used to calculate measures of gait stability: angular momentum, margin of stability, step width variability, CoM height, toe clearance, lateral arm swing. The minimum number of strides necessary to minimize intraparticipant variability was calculated via the interquartile range/median ratio (IMR) at 25% and 10% thresholds for each measure. A paired t test tested for significance between terrains (P < .05). The uneven walkway significantly destabilized gait as seen by increases in: coronal and sagittal plane angular momentum, step width variability, and toe clearance. We found no significant difference with the margin of stability between the 2 terrains possibly due to compensatory strategies (eg, lateral arm swing, trunk sway, step width). Recording a minimum of 10 strides per subject will keep each variable between the 25% and 10% IMR thresholds. In conclusion, the uneven walkway design significantly destabilizes human gait and at least 10 strides should be collected per subject.

Restricted access

Kevin Boldt, Anthony Killick, and Walter Herzog

A 1:1 locomotion–respiration entrainment is observed in galloping quadrupeds, and is thought to improve running economy. However, this has not been tested directly in animals, as animals cannot voluntarily disrupt this entrainment. The purpose of this study was to evaluate metabolic economy in a human gait involving all four limbs, cross-country skiing, in natural entrainment and forced nonentrainment. Nine elite cross-country skiers roller skied at constant speed using the 2-skate technique. In the first and last conditions, athletes used the natural entrained breathing pattern: inhaling with arm recovery and exhaling with arm propulsion, and in the second condition, the athletes disentrained their breathing pattern. The rate of oxygen uptake (VO2) and metabolic rate (MR) were measured via expired gas analysis. Propulsive forces were measured with instrumented skis and poles. VO2 and MR increased by 4% and 5% respectively when skiers used the disentrained compared with the entrained breathing pattern. There were no differences in ski or pole forces or in timing of the gait cycle between conditions. We conclude that breathing entrainment reduces metabolic cost of cross-country skiing by approximately 4%. Further, this reduction is likely a result of the entrainment rather than alterations in gait mechanics.

Restricted access

Antonio M. López, Diego Álvarez, Rafael C. González, and Juan C. Álvarez

Pedometers are basically step counters usually used to estimate the distance walked by a pedestrian. Although their precision to compute the number of steps is quite accurate (about 1%), their feasibility to estimate the walked distance is very poor, as they do not consider the intrinsic variability of human gait. Reported results show values of 10% of precision in optimal conditions, increasing to 50% when conditions differ. Electronic accelerometer-based pedometers base their functioning on a basic processing of the vertical acceleration of the waist. Recently, different approaches have been proposed to relate such signals to the step length. This can lead to an improvement of the performance of this kind of device for estimating the walked distance. In this article, we analyze four gait models applied to the vertical accelerations of the body’s center of gravity, three biomechanical and one empirical. We compare their precision and accuracy. Results support the superior performance of three of them over an ideal pedometer. We also analyze their feasibility to be implemented in pedometer-like devices.

Restricted access

Kin Shung, Carlos G. de Oliveira, and Jurandir Nadal

The walk–run transition (WRT) is a well-described phenomenon without any known cause; however, mechanical variables related to human gait have been associated with the WRT. This study tested the hypothesis that shock waves in the tibia and 3rd lumbar vertebra in addition to activity of tibialis anterior, vastus lateralis, and erector spinae muscles could be responsible for the WRT. Thirty subjects walked and ran on a treadmill at 80%, 90%, 100%, 110%, and 120% of preferred transition speed. Shock waves were measured with skin-mounted accelerometers and muscle activity by surface electromyography. The influence on the WRT was analyzed with two models. The shock waves and muscle activity tended to a significant increase (p < .05) for both walking and running with increased speed. The only factor that appeared to be involved in the WRT mechanism was the activity of the tibialis anterior; however, this was only confirmed by one of the two models. The use of different models to analyze the same data for the WRT triggers may give different results; thus, a standard model is required to investigate the influence of given factors on biological phenomena.

Restricted access

John H. Challis

This study examined the influence of force plate targeting, via stride length adjustments, on the magnitude and consistency of ground reaction force and segment angle profiles of the stance phase of human running. Seven male subjects (height, 1.77 m ± 0.081; mass, 72.4 kg ± 7.52; age range, 23 to 32 years) were asked to run at a mean velocity of 3.2 m · s–1 under three conditions (normal, short, and long strides). Four trials were completed for each condition. For each trial, the ground reaction forces were measured and the orientations of the foot, shank, and thigh computed. There were no statistically significant differences (p > .05) between the coefficients of variation of ground reaction force and segment angle profiles under the three conditions, so these profiles were produced consistently. Peak active vertical ground reaction forces, their timings, and segment angles at foot off were not significantly different across conditions. In contrast, significant differences between conditions were found for peak vertical impact forces and their timings, and for the three lower limb segment angles at the start of force plate contact. These results have implications for human gait studies, which require subjects to target the force plate. Targeting may be acceptable depending on the variables to be analyzed.