Search Results

You are looking at 1 - 10 of 3,458 items for :

Clear All
Restricted access

Bastiaan Breine, Philippe Malcolm, Veerle Segers, Joeri Gerlo, Rud Derie, Todd Pataky, Edward C. Frederick and Dirk De Clercq

ground reaction force (GRF) during the initial impact phase. 3 When quantifying the impact intensity of a running foot contact, the peak vertical instantaneous loading rate of the GRF (VILR) is frequently used. 3 – 7 VILR is defined as the maximal steepness of the slope of the initial

Restricted access

Carl G. Mattacola, Carolina Quintana, Jed Crots, Kimberly I. Tumlin and Stephanie Bonin

energy-absorbing liner, and a retention system. The retention system keeps the helmet in position before and during an impact, while the outer shell distributes the force over a larger area, provides a low coefficient of friction, and reduces the ability of sharp objects to contact the head. The energy

Restricted access

Shonn P. Hendee, Richard M. Greenwald and Joseph J. Crisco

In this study we investigated the compressive quasi-static mechanical properties and dynamic impact behavior of baseballs. Our purpose was to determine if static testing could be used to describe dynamic ball impact properties, and to compare static and dynamic properties between traditional and modified baseballs. Average stiffness and energy loss from 19 ball models were calculated from quasi-static compression data. Dynamic impact variables were determined from force–time profiles of balls impacted into a flat stationary target at velocities from 13.4 to 40.2 m/s. Peak force increased linearly with increasing ball model stiffness. Impulse of impact increased linearly with ball mass. Coefficient of restitution (COR) decreased with increasing velocity in all balls tested, although the rate of decrease varied among the different ball models. Neither quasi-static energy loss nor hysteresis was useful in predicting dynamic energy loss (COR2). The results between traditional and modified balls varied widely in both static and dynamic tests, which is related to the large differences in mass and stiffness between the two groups. These results indicate that static parameters can be useful in predicting some dynamic impact variables, potentially reducing the complexity of testing. However, some variables, such as ball COR, could not be predicted with the static tests performed in this study.

Restricted access

Victoria H. Stiles and Sharon J. Dixon

Research suggests that heightened impacts, altered joint movement patterns, and changes in friction coefficient from the use of artificial surfaces in sport increase the prevalence of overuse injuries. The purposes of this study were to (a) develop procedures to assess a tennis-specific movement, (b) characterize the ground reaction force (GRF) impact phases of the movement, and (c) assess human response during impact with changes in common playing surfaces. In relation to the third purpose it was hypothesized that surfaces with greatest mechanical cushioning would yield lower impact forces (PkFz) and rates of loading. Six shod volunteers performed 8 running forehand trials on each surface condition: baseline, carpet, acrylic, and artificial turf. Force plate (960 Hz) and kinematic data (120 Hz) were collected simultaneously for each trial. Running forehand foot plants are typically characterized by 3 peaks in vertical GRF prior to a foot-off peak. Group mean PkFz was significantly lower and peak braking force was significantly higher on the baseline surface compared with the other three test surfaces (p < 0.05). No significant changes in initial kinematics were found to explain unexpected PkFz results. The baseline surface yielded a significantly higher coefficient of friction compared with the other three test surfaces (p < 0.05). While the hypothesis is rejected, biomechanical analysis has revealed changes in surface type with regard to GRF variables.

Restricted access

Edward C. Frederick, Jeremy J. Determan, Saunders N. Whittlesey and Joseph Hamill

Seven top amateur or professional skateboarders (BW = 713 N ± 83 N) performed Ollie maneuvers onto and off an elevated wooden platform (45.7 cm high). We recorded ground reaction force (GRF) data for three Ollie Up (OU) and Ollie Down (OD) trials per participant. The vertical GRF (VGRF) during the OU has a characteristic propulsive peak (M = 2.22 body weight [BW] ± 0.22) resulting from rapidly rotating the tail of the board into the ground to propel the skater and board up and forward. The anterior-posterior (A-P) GRF also shows a pronounced peak (M = 0.05 ± 0.01 BW) corresponding with this propulsive VGRF peak. The initial phase of landing in the OD shows an impact peak in VGRF rising during the first 30 to 80 ms to a mean of 4.74 ± 0.46 BW. These impact peaks are higher than expected given the relatively short drop of 45.7 cm and crouched body position. But we observed that our participants intentionally affected a firm landing to stabilize the landing position; and the Ollie off the platform raised the center of mass, also contributing to higher forces.

Restricted access

Janet S. Dufek, John A. Mercer and Janet R. Griffin

The purpose of the study was to examine the effects of running speed and surface compliance on shock attenuation (SA) characteristics for male and female runners. We were also interested in identifying possible kinematic explanations, specifically, kinematics of the lower extremity at foot-ground contact, for anticipated gender differences in SA. Fourteen volunteer recreational runners (7 male, 7 female) ran at preferred and slow speeds on an adjustable bed treadmill, which simulated soft, medium, and hard surface conditions. Selected kinematic descriptors of lower extremity kinematics as well as leg and head peak impact acceleration values were obtained for 10 left leg contacts per subject-condition. Results identified significant SA values between genders across conditions and more specifically, across surfaces for females, with male runners demonstrating a similar trend. Regression modeling to predict SA by gender for surface conditions elicited unremarkable results, ranging from 30.9 to 59.9% explained variance. It appears that surface compliance does affect SA during running; however, the runner’s ability to dissipate the shock wave may not be expressly explained by our definition of lower extremity kinematics at contact.

Restricted access

Daniel W.T. Wundersitz, Paul B. Gastin, Samuel J. Robertson and Kevin J. Netto

Context:

Accelerometer peak impact accelerations are being used to measure player physical demands in contact sports. However, their accuracy to do so has not been ascertained.

Purpose:

To compare peak-impact-acceleration data from an accelerometer contained in a wearable tracking device with a 3-dimensional motion-analysis (MA) system during tackling and bumping.

Methods:

Twenty-five semielite rugby athletes wore a tracking device containing a 100-Hz triaxial accelerometer (MinimaxX S4, Catapult Innovations, Australia). A single retroreflective marker was attached to the device, with its position recorded by a 12-camera MA system during 3 physical-collision tasks (tackle bag, bump pad, and tackle drill; N = 625). The accuracy, effect size, agreement, precision, and relative errors for each comparison were obtained as measures of accelerometer validity.

Results:

Physical-collision peak impact accelerations recorded by the accelerometer overestimated (mean bias 0.60 g) those recorded by the MA system (P < .01). Filtering the raw data at a 20-Hz cutoff improved the accelerometer’s relationship with MA data (mean bias 0.01 g; P > .05). When considering the data in 9 magnitude bands, the strongest relationship with the MA system was found in the 3.0-g or less band, and the precision of the accelerometer tended to reduce as the magnitude of impact acceleration increased. Of the 3 movements performed, the tackle-bag task displayed the greatest validity with MA.

Conclusions:

The findings indicate that the MinimaxX S4 accelerometer can accurately measure physical-collision peak impact accelerations when data are filtered at a 20-Hz cutoff frequency. As a result, accelerometers may be useful to measure physical collisions in contact sports.

Restricted access

Theresa L. Miyashita and Paul A. Ullucci

Although research investigating concussion injuries is quite widespread, examination into the cumulative effect of subconcussive impacts is still in its infancy. A subconcussion is defined as a “cranial impact that does not result in known or diagnosed concussion on clinical grounds.” 1 Although

Restricted access

Duane Knudson

use the perceived prestige of journals or journal-level bibliometrics as a surrogate measure for quality of specific articles. This use of journal-level metrics, such as the impact factor (IF), to evaluate individual research papers or authors is both illogical and biased. This use of the IF has been

Restricted access

Logan A. Lucas, Benjamin S. England, Travis W. Mason, Christopher R. Lanning, Taylor M. Miller, Alexander M. Morgan and Thomas Gus Almonroeder

Sports participation has physical, social, and psychological benefits. 1 , 2 Unfortunately, lower-extremity musculoskeletal injuries are common, especially in sports that involve high-impact maneuvers such as landing and cutting (eg, soccer, basketball). 3 , 4 Although the severity of these