Search Results

You are looking at 1 - 10 of 272 items for :

  • Refine by Access: All Content x
Clear All
Restricted access

Thomas W. Jones, Barry C. Shillabeer, and Marco Cardinale

Infrared thermography (IRT) detects infrared light emitted by the body to visualize changes in body heat due to abnormalities in the surface blood flow. Human skin, with an emissivity of 0.98, is almost equal to a blackbody radiator, 1 and therefore, thermal images can be used to assess thermal

Open access

Pedro Gómez-Carmona, Ismael Fernández-Cuevas, Manuel Sillero-Quintana, Javier Arnaiz-Lastras, and Archit Navandar

. 5 Although there is sufficient information on how different methodologies are useful to reduce the injury risk, 6 it has been suggested that these programs or methodologies are not always applied successfully and could possibly be improved. Among the injury prevention programs, infrared

Restricted access

Gavin Tempest and Gaynor Parfitt

Imagery, as a cognitive strategy, can improve affective responses during moderate-intensity exercise. The effects of imagery at higher intensities of exercise have not been examined. Further, the effect of imagery use and activity in the frontal cortex during exercise is unknown. Using a crossover design (imagery and control), activity of the frontal cortex (reflected by changes in cerebral hemodynamics using near-infrared spectroscopy) and affective responses were measured during exercise at intensities 5% above the ventilatory threshold (VT) and the respiratory compensation point (RCP). Results indicated that imagery use influenced activity of the frontal cortex and was associated with a more positive affective response at intensities above VT, but not RCP to exhaustion (p < .05). These findings provide direct neurophysiological evidence of imagery use and activity in the frontal cortex during exercise at intensities above VT that positively impact affective responses.

Restricted access

Panteleimon Ekkekakis

Near-infrared spectroscopy (NIRS) presents an appealing option for investigating hemodynamic changes in the cerebral cortex during exercise. This review examines the physical basis of NIRS and the types of available instruments. Emphasis is placed on the physiological interpretation of NIRS signals. Theories from affective neuroscience and exercise psychobiology, including Davidson's prefrontal asymmetry hypothesis, Dietrich's transient hypofrontality hypothesis, and Ekkekakis's dual-mode model, are reviewed, highlighting the potential for designing NIRS-based tests in the context of exercise. Findings from 28 studies involving acute bouts of exercise are summarized. These studies suggest that the oxygenation of the prefrontal cortex increases during mild-to-moderate exercise and decreases during strenuous exercise, possibly proximally to the respiratory compensation threshold. Future studies designed to test hypotheses informed by psychological theories should help elucidate the significance of these changes for such important concepts as cognition, affect, exertion, and central fatigue.

Restricted access

Terry J. Housh, Jeffrey R. Stout, Glen O. Johnson, Dona J. Housh, and Joan M. Eckerson

The purpose of the present study was to determine the validity of near-infrared interactance (NIR) estimates of percent body fat (% fat) using Futrex-5000, Futrex-5000A, and Futrex-1000 instruments in youth wrestlers (age, M ± SD = 11.4 ± 1.5 years) by comparing them to % fat values from underwater weighing. Fifty-eight members of youth wrestling clubs (% fat, M ± SD = 10.7 ± 5.1% fat) volunteered to serve as subjects. The statistical analyses included examination of the constant error (CE), standard error of estimate (SEE), correlation coefficient (r), and total error (TE). The results indicated that the errors (TE = 8.0–16.2% fat) associated with the NIR instruments were too large to be of practical value for estimating % fat in young male athletes. It is recommended that (a) the instrument generated NIR % fat estimates be modified based on the CE values in the present investigation such that the CE = 0, and (b) the modified NIR % fat estimates be cross-validated on independent samples of young male athletes.

Restricted access

Goutham Ganesan, Szu-yun Leu, Albert Cerussi, Bruce Tromberg, Dan M. Cooper, and Pietro Galassetti

Near-infrared spectroscopy has long been used to measure tissue-specific O2 dynamics in exercise, but most published data have used continuous wave devices incapable of quantifying absolute Hemoglobin (Hb) concentrations. We used time-resolved near-infrared spectroscopy to study exercising muscle (Vastus Lateralis, VL) and prefrontal cortex (PFC) Hb oxygenation in 11 young males (15.3 ± 2.1 yrs) performing incremental cycling until exhaustion (peak VO2 = 42.7 ± 6.1 ml/min/kg, mean peak power = 181 ± 38 W). Time-resolved near-infrared spectroscopy measurements of reduced scattering (µs´) and absorption (µa) at three wavelengths (759, 796, and 833 nm) were used to calculate concentrations of oxyHb ([HbO2]), deoxy Hb ([HbR]), total Hb ([THb]), and O2 saturation (stO2). In PFC, significant increases were observed in both [HbO2] and [HbR] during intense exercise. PFC stO2% remained stable until 80% of total exercise time, then dropped (−2.95%, p = .0064). In VL, stO2% decreased until peak time (−6.8%, p = .01). Segmented linear regression identified thresholds for PFC [HbO2], [HbR], VL [THb]. There was a strong correlation between timing of second ventilatory threshold and decline in PFC [HbO2] (r = .84). These findings show that time-resolved near-infrared spectroscopy can be used to study physiological threshold phenomena in children during maximal exercise, providing insight into tissue specific hemodynamics and metabolism.

Restricted access

Dennis-Peter Born, Thomas Stöggl, Mikael Swarén, and Glenn Björklund


To investigate the cardiorespiratory and metabolic response of trail running and evaluate whether heart rate (HR) adequately reflects the exercise intensity or if the tissue-saturation index (TSI) could provide a more accurate measure during running in hilly terrain.


Seventeen competitive runners (4 women, V̇O2max, 55 ± 6 mL · kg–1 · min–1; 13 men, V̇O2max, 68 ± 6 mL · kg–1 · min–1) performed a time trial on an off-road trail course. The course was made up of 2 laps covering a total distance of 7 km and included 6 steep uphill and downhill sections with an elevation gain of 486 m. All runners were equipped with a portable breath-by-breath gas analyzer, HR belt, global positioning system receiver, and near-infrared spectroscopy (NIRS) device to measure the TSI.


During the trail run, the exercise intensity in the uphill and downhill sections was 94% ± 2% and 91% ± 3% of maximal heart rate, respectively, and 84% ± 8% and 68% ± 7% of V̇O2max, respectively. The oxygen uptake (V̇O2) increased in the uphill sections and decreased in the downhill sections (P < .01). Although HR was unaffected by the altering slope conditions, the TSI was inversely correlated to the changes in V̇O2 (r = –.70, P < .05).


HR was unaffected by the continuously changing exercise intensity; however, TSI reflected the alternations in V̇O2. Recently used exclusively for scientific purposes, this NIRS-based variable may offer a more accurate alternative than HR to monitor running intensity in the future, especially for training and competition in hilly terrain.

Restricted access

Y.L. Lo, H.H. Zhang, C.C. Wang, Z.Y. Chin, S. Fook-Chong, C. Gabriel, and C.T. Guan

In overt reading and singing tasks, actual vocalization of words in a rhythmic fashion is performed. During execution of these tasks, the role of underlying vascular processes in relation to cortical excitability changes in a spatial manner is uncertain. Our objective was to investigate cortical excitability changes during reading and singing with transcranial magnetic stimulation (TMS), as well as vascular changes with nearinfrared spectroscopy (NIRS). Findings with TMS and NIRS were correlated. TMS and NIRS recordings were performed in 5 normal subjects while they performed reading and singing tasks separately. TMS was applied over the left motor cortex at 9 positions 2.5 cm apart. NIRS recordings were made over these identical positions. Although both TMS and NIRS showed significant mean cortical excitability and hemodynamic changes from baseline during vocalization tasks, there was no significant spatial correlation of these changes evaluated with the 2 techniques over the left motor cortex. Our findings suggest that increased left-sided cortical excitability from overt vocalization tasks in the corresponding “hand area” were the result of “functional connectivity,” rather than an underlying “vascular overflow mechanism” from the adjacent speech processing or face/mouth areas. Our findings also imply that functional neurophysiological and vascular methods may evaluate separate underlying processes, although subjects performed identical vocalization tasks. Future research combining similar methodologies should embrace this aspect and harness their separate capabilities.

Restricted access

Manuel E. Hernandez, Erin O’Donnell, Gioella Chaparro, Roee Holtzer, Meltem Izzetoglu, Brian M. Sandroff, and Robert W. Motl

regions ( Zhou et al., 2006 ) that may significantly overlap with areas used for the control of gait ( Takakusaki, 2013 ). However, mobile neuroimaging studies (i.e., functional near-infrared spectroscopy [fNIRS] paradigms) have not yet examined the PFC activation profiles of the concurrent performance of

Restricted access

Pai-Yun Cheng, Hsiao-Feng Chieh, Chien-Ju Lin, Hsiu-Yun Hsu, Jia-Jin J. Chen, Li-Chieh Kuo, and Fong-Chin Su

volume, and oxygenation of the brains of older adults has recently attracted the attention of researchers. The neuron activation and hemodynamic responses in the cerebral cortex are closely coupled. Near-infrared spectroscopy (NIRS) is a noninvasive, low cost, and low-space requirement technique that can