damage differs depending on the exercise stimulus, with endurance modalities associated with high metabolic costs and relatively low mechanical stress 10 compared with eccentric exercise associated with larger mechanical stress. 11 In contrast to this, intermittent exercise is shown to induce both
Search Results
Rebecca Quinlan and Jessica A. Hill
Sally P. Waterworth, Connor C. Spencer, Aaron L. Porter, and James P. Morton
30. All p s < .05. Exercise Capacity During the HIT Test High-intensity intermittent exercise capacity was different between conditions ( p < .001), whereby TRAIN HIGH (22 ± 9 min; p = .005: 95% CI for differences = 3–16 min, almost certainly beneficial ) was greater than both PERCEPTION (12 ± 6
Valderi de Abreu de Lima, Gabriel Ribeiro Cordeiro, Luis Paulo Gomes Mascarenhas, Suzana Nesi França, Juliana Pereira Decimo, Andréia Araújo Porchat de leão, Camila Kapp Fritz, and Neiva Leite
hypoglycemia in adults with T1DM ( 16 , 20 ). The results are controversial when analyzing the risk of hypoglycemia and intermittent exercise in children and adolescents, especially when examining the timing of insulin administration and HIIE ( 8 ). Therefore, the present study aimed to examine the influence
Shannon S. Block, Trevor R. Tooley, Matthew R. Nagy, Molly P. O’Sullivan, Leah E. Robinson, Natalie Colabianchi, and Rebecca E. Hasson
acute effects of action-based video game play and intermittent exercise, performed at varying intensities (low, moderate, and high) on math performance in preadolescent children. Based on the findings of Phillips and Castelli ( 26 ), it was hypothesized that high-intensity exercise breaks would elicit a
Gerhard Tschakert and Peter Hofmann
High-intensity intermittent exercise (HIIE) has been applied in competitive sports for more than 100 years. In the last decades, interval studies revealed a multitude of beneficial effects in various subjects despite a large variety of exercise prescriptions. Therefore, one could assume that an accurate prescription of HIIE is not relevant. However, the manipulation of HIIE variables (peak workload and peak-workload duration, mean workload, intensity and duration of recovery, number of intervals) directly affects the acute physiological responses during exercise leading to specific medium- and long-term training adaptations. The diversity of intermittent-exercise regimens applied in different studies may suggest that the acute physiological mechanisms during HIIE forced by particular exercise prescriptions are not clear in detail or not taken into consideration. A standardized and consistent approach to the prescription and classification of HIIE is still missing. An optimal and individual setting of the HIIE variables requires the consideration of the physiological responses elicited by the HIIE regimen. In this regard, particularly the intensities and durations of the peak-workload phases are highly relevant since these variables are primarily responsible for the metabolic processes during HIIE in the working muscle (eg, lactate metabolism). In addition, the way of prescribing exercise intensity also markedly influences acute metabolic and cardiorespiratory responses. Turn-point or threshold models are suggested to be more appropriate and accurate to prescribe HIIE intensity than using percentages of maximal heart rate or maximal oxygen uptake.
Al Haddad Hani, Paul B. Laursen, Ahmaidi Said, and Buchheit Martin
Purpose:
To assess the effect of supramaximal intermittent exercise on long-term cardiac autonomic activity, inferred from heart rate variability (HRV).
Methods:
Eleven healthy males performed a series of two consecutive intermittent 15-s runs at 95% VIFT (i.e., speed reached at the end of the 30-15 Intermittent Fitness Test) interspersed with 15 s of active recovery at 45% VIFT until exhaustion. Beat-to-beat intervals were recorded during two consecutive nights (habituation night and 1st night) before, 10 min before and immediately after exercise, as well as 12 h (2nd night) and 36 h (3rd night) after supramaximal intermittent exercise. The HRV indices were calculated from the last 5 min of resting and recovery periods, and the first 10 min of the first estimated slow wave sleep period.
Results:
Immediate post-supramaximal exercise vagal-related HRV indices were significantly lower than immediate pre-supramaximal exercise values (P < .001). Most vagal-related indices were lower during the 2nd night compared with the 1st night (eg, mean RR intervals, P = .03). Compared with the 2nd night, vagal-related HRV indices were significantly higher during the 3rd night. Variables were not different between the 1st and 3rd nights; however, we noted a tendency (adjusted effect size, aES) for an increased normalized high-frequency component (P = .06 and aES = 0.70) and a tendency toward a decreased low-frequency component (P = .06 and aES = 0.74).
Conclusion:
Results confirm the strong influence of exercise intensity on short- and long-term post exercise heart rate variability recovery and might help explain the high efficiency of supramaximal training for enhancing indices of cardiorespiratory fitness.
Rafaela Nehme, Flávia M.S. de Branco, Públio F. Vieira, Ana Vitória C. Guimarães, Gederson K. Gomes, Gabriela P. Teixeira, Pedro H. Rodrigues, Leonardo M. de Castro Junior, Guilherme M. Puga, Bryan Saunders, and Erick P. de Oliveira
rinse is most likely to occur in sports consisting of continuous exercise with a duration between 30 and 60 min ( Best et al., 2021 ; Carter et al., 2004 ; Jeukendrup, 2013 ; Pottier et al., 2010 ; Rollo et al., 2010 ). However, its effects on intermittent exercise, such as soccer, are less well
Nicolette C. Bishop, Michael Gleeson, Ceri W. Nicholas, and Ajmol Ali
Ingesting carbohydrate (CHO) beverages during prolonged, continuous heavy exercise results in smaller changes in the plasma concentrations of several cytokines and attenuates a decline in neutrophil function. In contrast, ingesting CHO during prolonged intermittent exercise appears to have negligible influence on these responses, probably due to the overall moderate intensity of these intermittent exercise protocols. Therefore, we examined the effect of CHO ingestion on plasma interIeukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS)-stimuIated neutrophil degranulation responses to high-intensity intermittent running. Six trained male soccer players performed 2 exercise trials, 7 days apart, in a randomized, counterbalanced design. On each occasion, they completed six 15-min periods of intermittent running consisting of maximal sprinting interspersed with less intense periods of running and walking. Subjects consumed either CHO or artificially sweetened placebo(PLA) beverages immediately before and at 15-min intervals during the exercise. At 30 min post-exercise, CHO versus PLA was associated with a higher plasma glucose concentration (p< .01), a lower plasma cortisol and IL-6 concentration (p < .02), and fewer numbers of circulating neutrophils (p < .05). Following the exercise, LPS-stimulated elastase release per neutrophil fell 31 % below baseline values on the PLA trial (p = .06) compared with 11% on the CHO trial (p = .30). Plasma TNF-α concentration increased following the exercise (main effect of time, p < .001) but was not affected by CHO. These data indicate that CHO ingestion attenuates changes in plasma IL-6 concentration, neutrophil trafficking, and LPS-stimulated neutrophil degranulation in response to intermittent exercise that involves bouts of very high intensity exercise.
Jonathan P. Little, Philip D. Chilibeck, Dawn Ciona, Albert Vandenberg, and Gordon A. Zello
The glycemic index (GI) of a pre exercise meal may affect substrate utilization and performance during continuous exercise.
Purpose:
To examine the effects of low- and high-GI foods on metabolism and performance during high-intensity, intermittent exercise.
Methods:
Seven male athletes participated in three experimental trials (low-GI, high-GI, and fasted control) separated by ~7 days. Foods were consumed 3 h before (~1.3 g·kg−1 carbohydrate) and halfway through (~0.2 g·kg−1 carbohydrate) 90 min of intermittent treadmill running designed to simulate the activity pattern of soccer. Expired gas was collected during exercise to estimate substrate oxidation. Performance was assessed by the distance covered on fve 1-min sprints during the last 15 min of exercise.
Results:
Respiratory exchange ratio was higher and fat oxidation lower during exercise in the high-GI condition compared with fasting (P < .05). The mean difference in total distance covered on the repeated sprint test between low GI and fasting (247 m; 90% confidence limits ±352 m) represented an 81% (likely, probable) chance that the low-GI condition improved performance over fasting. The mean difference between high GI and fasted control (223 m; ±385 m) represented a 76% (likely, probable) chance of improved performance. There were no differences between low and high GI.
Conclusions:
When compared with fasting, both low- and high-GI foods consumed 3 h before and halfway through prolonged, high-intensity intermittent exercise improved repeated sprint performance. High-GI foods impaired fat oxidation during exercise but the GI did not appear to influence high-intensity, intermittent exercise performance.
Randy J. Schmitz, John C. Cone, Timothy J. Copple, Robert A. Henson, and Sandra J. Shultz
Context:
Potential biomechanical compensations allowing for maintenance of maximal explosive performance during prolonged intermittent exercise, with respect to the corresponding rise in injury rates during the later stages of exercise or competition, are relatively unknown.
Objective:
To identify lower-extremity countermovement-jump (CMJ) biomechanical factors using a principal-components approach and then examine how these factors changed during a 90-min intermittent-exercise protocol (IEP) while maintaining maximal jump height.
Design:
Mixed-model design.
Setting:
Laboratory.
Participants:
Fifty-nine intermittent-sport athletes (30 male, 29 female) participated in experimental and control conditions.
Interventions:
Before and after a dynamic warm-up and every 15 min during the 1st and 2nd halves of an individually prescribed 90-min IEP, participants were assessed on rating of perceived exertion, sprint/cut speed, and 3-dimensional CMJ biomechanics (experimental). On a separate day, the same measures were obtained every 15 min during 90 min of quiet rest (control).
Main Outcome Measures:
Univariate piecewise growth models analyzed progressive changes in CMJ performance and biomechanical factors extracted from a principal-components analysis of the individual biomechanical dependent variables.
Results:
While CMJ height was maintained during the 1st and 2nd halves, the body descended less and knee kinetic and energetic magnitudes decreased as the IEP progressed.
Conclusions:
The results indicate that vertical-jump performance is maintained along with progressive biomechanical changes commonly associated with decreased performance. A better understanding of lower-extremity biomechanics during explosive actions in response to IEP allows us to further develop and individualize performance training programs.