Search Results

You are looking at 1 - 10 of 61 items for :

  • "joint coordination" x
  • All content x
Clear All
Restricted access

Yumeng Li, Jupil Ko, Marika A. Walker, Cathleen N. Brown, and Kathy J. Simpson

individuals with CAI. Regarding kinetics, it has been observed that individuals with CAI exhibited kinetic compensations including reduced plantarflexion and knee extension moments 10 and less energy dissipation by the knee. 19 Recent studies have suggested that evaluating joint coordination patterns 20 , 21

Restricted access

Hiroko Tanabe, Keisuke Fujii, and Motoki Kouzaki

We aimed to investigate joint coordination of lower limbs in dancers during tiptoe standing and the relationship between joint coordination and muscle coactivation. Seven female ballet dancers performed tiptoe standing with six leg positions (fi e classical dance positions and one modern dance position) for 10 s. The kinematic data of the metatarsophalangeal (MP), ankle, knee, and hip joints was collected, and surface electromyography (EMG) of over 13 lower limb muscles was conducted. Principal component analysis was performed to determine joint coordination. MP–ankle and ankle–knee had in-phase coordination, whereas knee–hip showed anti-phase coordination in the sagittal plane. In addition, most EMG–EMG coherence around the MP and ankle joints was significant up to 50 Hz when these two joints swayed with in-phase. This suggests that different joint coordination patterns are associated with neural processing related to different muscle coactivation patterns. In conclusion, ballet dancers showed in-phase coordination from the MP to knee joints, which was associated with muscle coactivation to a higher frequency domain (up to 50 Hz) in comparison with anti-phase coordination.

Restricted access

Yaweng Tseng, John P. Scholz, and Gregor Schöner

This study used the uncontrolled manifold (UCM) approach to study joint coordination underlying the control of task-related variables important for success at reaching and pointing to targets. More combinations of joint motions are available to the control system to achieve task success than are strictly necessary. How this abundance of motor solutions is managed by the nervous system and whether and how the availability of visual information affects the solution to joint coordination was investigated in this study. The variability of joint angle combinations was partitioned into 2 components with respect to control of either the hand's path or the path of the arm's center of mass (CM). The goal-equivalent variability (GEV) component represents trial-to-trial fluctuations of the joint configuration consistent with a stable value of the hand or CM path. The other component, non-goal-equivalent variability (NGEV), led to deviations away from the desired hand or CM path. We hypothesized a style of control in which the NGEV component is selectively restricted while allowing a range of goal-equivalent joint combinations to be used to achieve stability of the hand and CM paths. Twelve healthy right-handed subjects reached across their body to the center of a circular target with both the right and left arms and with their eyes open or closed on different trials. When repeating the task with the same arm under identical task conditions, subjects used a range of goal-equivalent joint configurations to control the entire trajectory of both the hand's and the arm's CM motion, as well as the terminal position of the pointer-tip. Overall joint configuration variability was consistently larger in the middle of the movement, near the time of peak velocity. The style of joint coordination was qualitatively similar regardless of the arm used to point or the visual condition. Quantitative differences in the structure of joint coordination were present for the non-dominant arm, however, when pointing in the absence of vision of the hand and target. The results of this study suggest that the nervous system uses a control strategy that provides for a range of goal-equivalent, rather than unique, joint combinations to stabilize the values of important task-related variables, while selectively restricting joint configurations that change these values. The possible advantage of this style of control is discussed. Absence of vision during reaching affected joint coordination only quantitatively and only for the less skilled left arm, suggesting that the role of visual information may be greater when organizing the motor components of this arm.

Restricted access

Bryan C. Heiderscheit, Joseph Hamill, and Richard E.A. van Emmerik

The purpose of this investigation was to determine whether individuals with patellofemoral pain (PFP) display a reduction in intralimb joint coordination variability compared to nonimpaired persons. In addition, it was hypothesized that the variability of the stride characteristics would be similar between groups. Eight individuals with unilateral PFP and 8 nonimpaired participants ran on a treadmill at a fixed (2.68 m·s–1) and preferred speed while stride characteristics and 3-D kinematics of the bilateral lower extremities were recorded. Intralimb coordination variability was measured using a vector coding technique applied to relative motion plots of various joint couplings. The PFP group displayed greater stride length variability during running at the preferred speed. However, this was not the case during running at the fixed speed. When averaging across the entire stride cycle, coordination variability for all joint couplings was consistent between the two groups. However, further analysis about heel-strike revealed reduced joint coordination variability for the thigh rotation/leg rotation coupling of the PFP group’s injured limb compared to that of the nonimpaired group. With the exception of the transverse plane rotations at heel-strike, it would appear that the level of pain experienced by the PFP participants may not be great enough to produce a change in the intralimb coordination patterns during running.

Restricted access

Michael A. Samaan, Matthew C. Hoch, Stacie I. Ringleb, Sebastian Bawab, and Joshua T. Weinhandl

The aim of this study was to determine the effects of hamstrings fatigue on lower extremity joint coordination variability during a sidestep cutting maneuver. Twenty female recreational athletes performed five successful trials of a sidestep cutting task preand postfatigue. Each participant completed an isolated hamstrings fatigue protocol consisting of isokinetic maximum effort knee flexion and passive extension contractions. Vector coding was used to examine hip and knee joint couplings (consisting of various planar motions) during the impact and weight acceptance phases of the sidestep cut stance phase. Paired t tests were used to analyze differences of each phase as an effect of fatigue, where alpha was set a priori at .05. The hip rotation/knee rotation coupling exhibited a significant decrease in coordination variability as a function of fatigue in both the impact (P = .015) and weight acceptance phases (P = .043). Similarly, the hip adduction-abduction/knee rotation coupling exhibited a significant decrease in coordination variability in the weight acceptance phase (P = .038). Hamstrings fatigue significantly decreased coordination variability within specific lower extremity joint couplings that included knee rotation. Future studies should be conducted to determine if this decrease in coordination variability is related to lower extremity injury mechanisms.

Restricted access

Bryan C. Heiderscheit

The purpose of this paper is to discuss the role of variability in human movement, with emphasis on locomotion variability. Based on the assessment of stride characteristics, movement variability has been associated with reduced gait stability and unsteadiness. However, based on the measure of joint coordination during locomotion, variability has been suggested to provide a source of adaptation. Therefore, it would appear that the assessment of movement coordination from either the task outcome (i.e., stride characteristics) or the joint coordination patterns provide distinctly opposing views of variability. This paper will discuss the use of the variability measures, specifically joint coordination variability, from a clinical perspective. Investigations will be presented in which a reduction in joint coordination variability has been associated with pathology. Finally, the clinical implications of these measures as well as treatment suggestions are discussed.

Restricted access

Anderson Nascimento Guimarães, Herbert Ugrinowitsch, Juliana Bayeux Dascal, and Victor Hugo Alves Okazaki

. Adapted from “Perform Kicking With or Without Jumping: Joint Coordination and Kinetic Differences Between Taekwondo Back Kicks and Jumping Back Kicks,” by Cheng, K.B., Wang, Y.-H., Kuo, S.-Y., Wang, K.-M., & Huang, Y.-C. (2015). Journal of Sports Sciences, 33 (15), 1614–1621. Signal Processing The

Restricted access

Patrick Ippersiel, Richard Preuss, and Shawn M. Robbins

Continuous relative phase (CRP) is an analysis technique used to study joint coordination and variability in human movement. 1 CRP is based in dynamic systems theory and quantifies the phase relationship between 2 body segments. 2 A recent review suggests that the most robust approach of

Restricted access

Wei Liu, Jill Whitall, and Thomas M. Kepple

Functional arm reaching involves multilinked joints: shoulder, elbow, and wrist. We propose that induced position analysis is a useful analytical tool for multijoint coordination of arm reaching. This method was used to compute the contributions of the net joint moment to the hand position when reaching forward. We describe the method and give examples of validating this model with motion capture data. The shoulder and elbow were prime movers of the arm: both acted together with an “overshoot” and “undershoot” pattern respectively to move the hand forward into the final position.

Restricted access

Anderson Nascimento Guimarães, Herbert Ugrinowitsch, Juliana Bayeux Dascal, Alessandra Beggiato Porto, and Victor Hugo Alves Okazaki

) Practice of motor skill OR Practice effect OR Skill learning OR Learning a new Skill (b) Inter joint coordination OR Multi joint coordination OR coordination changes (c) Practice of motor skill OR Practice effect OR Skill learning OR Learning a new Skill) AND Inter joint coordination OR Multi joint