Search Results

You are looking at 1 - 10 of 17 items for :

  • "kidney function" x
Clear All
Restricted access

David L. Mayhew, Jerry L. Mayhew and John S. Ware

The purpose of this study was to determine the effect of long-term Cr supplementation on blood parameters reflecting liver and kidney function. Twenty-three members of an NCAA Division II American football team (ages = 19–24 years) with at least 2 years of strength training experience were divided into a Cr monohydrate group (CrM, n = 10) in which they voluntarily and spontaneously ingested creatine, and a control group (n = 13) in which they took no supplements. Individuals in the CrM group averaged regular daily consumption of 5 to 20 g (mean ± SD = 13.9 ± 5.8 g) for 0.25 to 5.6 years (2.9 ± 1.8 years). Venous blood analysis for serum albumin, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, bilirubin, urea, and creatinine produced no significant differences between groups. Creatinine clearance was estimated from serum creatinine and was not significantly different between groups. Within the CrM group, correlations between all blood parameters and either daily dosage or duration of supplementation were nonsignificant. Therefore, it appears that oral supplementation with CrM has no long-term detrimental effects on kidney or liver functions in highly trained college athletes in the absence of other nutritional supplements.

Restricted access

Dahai Yu, Ying Chen, Tao Chen, Yamei Cai, Rui Qin, Zhixin Jiang and Zhanzheng Zhao

complete loss of kidney function. In patients with end-stage renal disease, dialysis or transplant is the only treatment option. To reduce the disease burden, it is essential to identify modifiable and promotable factors that may help to prevent CKD or the progression of disease. Physical activity has been

Restricted access

Marquis Hawkins, Anne B. Newman, Magdalena Madero, Kushang V. Patel, Michael G. Shlipak, Jennifer Cooper, Kirsten L. Johansen, Sankar D. Navaneethan, Ronald I. Shorr, Eleanor M. Simonsick and Linda F Fried

Background:

Physical activity (PA) may play a role in preserving kidney health. The purpose of this study was to determine if PA and sedentary behavior are associated with incident chronic kidney disease (CKD) and change in kidney function in older adults.

Methods:

The Health, Aging, and Body Composition study is a prospective cohort of 3075 well-functioning older adults. PA and television watching was measured by self-report, and serum cystatin C was used to estimate glomerular filtration rate (eGFR). CKD was defined as an eGFR <60 ml/min/1.73m2. Rapid kidney function decline was defined as an annual loss in eGFR of >3ml/min/1.73m2. Discrete survival analysis was used to determine if baseline PA and television watching were related to 10-year cumulative incidence of CKD and rapid decline in kidney function.

Results:

Individuals who reported watching television >3 hours/day had a higher risk of incident CKD (HR 1.34; 95% CI, 1.09-1.65) and experiencing a rapid decline in kidney function (HR 1.26; 95% CI, 1.05-1.52) compared with individuals who watched television <2 hours/day. PA was not related to either outcome.

Conclusions:

High levels of television watching are associated with declining kidney function; the mechanisms that underlie this association need further study.

Restricted access

Jacques R. Poortmans and Olivier Dellalieux

Excess protein and amino acid intake have been recognized as hazardous potential implications for kidney function, leading to progressive impairment of this organ. It has been suggested in the literature, without clear evidence, that high protein intake by athletes has no harmful consequences on renal function. This study investigated body-builders (BB) and other well-trained athletes (OA) with high and medium protein intake, respectively, in order to shed light on this issue. The athletes underwent a 7-day nutrition record analysis as well as blood sample and urine collection to determine the potential renal consequences of a high protein intake. The data revealed that despite higher plasma concentration of uric acid and calcium. Group BB had renal clearances of creatinine, urea, and albumin that were within the normal range. The nitrogen balance for both groups became positive when daily protein intake exceeded 1.26 g · kg−1 but there were no correlations between protein intake and creatinine clearance, albumin excretion rate, and calcium excretion rate. To conclude, it appears that protein intake under 2.8 g·kg−1 does not impair renal function in well-trained athletes as indicated by the measures of renal function used in this study.

Restricted access

Wayne W. Campbell, Lyndon J.O. Joseph, Richard E. Ostlund Jr., Richard A. Anderson, Peter A. Farrell and William J. Evans

This study assessed the effects of resistive training (RT) with or without chromium picolinate (Cr-pic) supplementation on the 24-h urinary excretions of myo-inositol, D-chiro-inositol, and pinitol, as well as clinical indices of kidney and liver functions. Thirty-two nondiabetic subjects, age 62 ± 4 y, performed RT twice weekly for 12 wk and consumed either 924 μg Cr/d as Cr-pic (n = 17) or a placebo (n = 15). Whole-body strength increased in all subjects by 20% and urinary chromium excretion increased 47-fold in the Cr-pic group. Urinary myo-inositol, D-chiro-inositol, and pinitol were not changed with RT or influenced by Cr-pic. Serum indices of kidney and liver functions were within clinically normal ranges at baseline and the end of the study. These results suggest that RT did not influence the urinary excretions of inositols. High dose Cr-pic did not influence the urinary excretion of inositols and the selected indices of kidney and liver functions in conjunction with RT

Restricted access

Andreas M. Kasper, Ben Crighton, Carl Langan-Evans, Philip Riley, Asheesh Sharma, Graeme L. Close and James P. Morton

), resting metabolic rate, peak oxygen uptake, and blood clinical chemistry to assess endocrine status, lipid profiles, hydration, and kidney function. Athlete Overview A professional male MMA athlete (age: 22 years; body mass: 80.2 kg; and height 1.80 m) volunteered to take part after providing informed

Restricted access

Stephen M. Cornish, Darren G. Candow, Nathan T. Jantz, Philip D. Chilibeck, Jonathan P. Little, Scott Forbes, Saman Abeysekara and Gordon A. Zello

Purpose:

The authors examined the combined effects of conjugated linoleic acid (CLA), creatine (C), and whey protein (P) supplementation during strength training.

Methods:

Sixty-nine participants (52 men, 17 women; M ± SD age 22.5 ± 2.5 yr) were randomly assigned (double-blind) to 1 of 3 groups: CCP (6 g/d CLA + 9 g/d C + 36 g/d P; n = 22), CP (C + P + placebo oil; n = 25), or P (P + placebo oil; n = 22) during 5 wk of strength training (4–5 sets, 6–12 repetitions, 6 d/wk). Measurements were taken for body composition (air-displacement plethysmography), muscle thickness (ultrasound) of the flexors and extensors of the elbow and knee, 1-repetitionmaximum (1-RM) strength (leg press and bench press), urinary markers of bone resorption (N-telopeptides, NTx), myofibrillar protein catabolism (3-methylhistidine; 3-MH), oxidative stress (8-isoprostanes), and kidney function (microalbumin) before and after training.

Results:

Contrast analyses indicated that the CCP group had a greater increase in bench-press (16.2% ± 11.3% vs. 9.7% ± 17.0%; p < .05) and legpress (13.1% ± 9.9% vs. 7.7% ± 14.2%; p < .05) strength and lean-tissue mass (2.4% ± 2.8% vs. 1.3% ± 4.1%; p < .05) than the other groups combined. All groups increased muscle thickness over time (p < .05). The relative change in 3-MH (CCP –4.7% ± 70.2%, CP –0.4% ± 81.4%, P 20.3% ± 75.2%) was less in the groups receiving creatine (p < .05), with the difference for NTx also close to significance (p = .055; CCP–3.4% ± 66.6%, CP–3.9% ± 64.9%, P 26.0% ± 63.8%). There were no changes in oxidative stress or kidney function.

Conclusion:

Combining C, CLA, and P was beneficial for increasing strength and lean-tissue mass during heavy resistance training.

Restricted access

Neil M. Johannsen, Zebblin M. Sullivan, Nicole R. Warnke, Ann L. Smiley-Oyen, Douglas S. King and Rick L. Sharp

Purpose:

To determine whether chicken noodle soup before exercise increases ad libitum water intake, fluid balance, and physical and cognitive performance compared with water.

Methods:

Nine trained men (age 25 ± 3 yr, VO2peak 54.2 ± 5.1 ml · kg−1 · min−1; M ± SD) performed cycle exercise in the heat (wet bulb globe temperature = 25.9 ± 0.4 °C) for 90 min at 50% VO2peak, 45 min after ingesting 355 ml of either commercially available bottled water (WATER) or chicken noodle soup (SOUP). The same bottled water was allowed ad libitum throughout both trials. Participants then completed a time trial to finish a given amount of work (10 min at 90% VO2peak; n = 8). Cognitive performance was evaluated by the Stroop color–word task before, every 30 min during, and immediately after the time trial.

Results:

Ad libitum water intake throughout steady-state exercise was greater in SOUP than with WATER (1,435 ± 593 vs. 1,163 ± 427 g, respectively; p < .03). Total urine volume was similar in both trials (p = .13), resulting in a trend for greater water retention in SOUP than in WATER (87.7% ± 7.6% vs. 74.9% ± 21.7%, respectively; p = .09), possibly due to a change in free water clearance (–0.32 ± 1.22 vs. 0.51 ± 1.06 ml/min, respectively; p = .07). Fluid balance tended to be improved with SOUP (–106 ± 603 vs. –478 ± 594 g, p = .05). Likewise, change in plasma volume tended to be reduced in SOUP compared with WATER (p = .06). Only mild dehydration was achieved (<1%), and physical performance was not different between treatments (p = .77). The number of errors in the Stroop color–word task was lower in SOUP throughout the entire trial (treatment effect; p = .04).

Conclusion:

SOUP before exercise increased ad libitum water intake and may alter kidney function.

Restricted access

Sungchul Lee, Sangyoon Lee, Seongryu Bae, Kazuhiro Harada, Songee Jung, Keitaro Makino and Hiroyuki Shimada

/min/1.73 m 2 ); GDS = Geriatric Depression Scale; MMSE = Mini-Mental State Examination; BMI = body mass index; CI = confidence interval. Discussion This 4-year prospective study examined the association between CKD and disability. First, decreasing kidney function, as assessed by eGFR, is strongly

Restricted access

Damir Zubac, Drazen Cular and Uros Marusic

causes acute suppression in the urine-concentrating ability of the renal system. 34 However, the urine samples in this investigation were collected after 12 hours had passed from previous training; therefore, it is likely that a surrogate mechanism of kidney function (eg, the autoregulation of