Search Results

You are looking at 1 - 3 of 3 items for :

  • "landing ground reaction" x
Clear All
Restricted access

AmirAli Jafarnezhadgero, Morteza Madadi-Shad, Christopher McCrum and Kiros Karamanidis

The aim of this study was to identify the effects of a corrective exercise program on landing ground reaction force characteristics and lower limb kinematics in older adults with genu valgus. A total of 26 older male adults with genu valgus were randomized into two groups. An experimental group conducted a 14-week corrective exercise program, whereas a control group did not perform any exercise. The experimental group displayed lower peak vertical, peak anterior and posterior, and peak medial ground reaction force components during the posttest compared with the pretest. The vertical loading rate, impulses, and free moment amplitudes were not statistically different between groups. In the experimental group, the peak knee abduction during the posttest was significantly smaller and the peak hip flexion angle was significantly greater than during the pretest. The authors suggest that this corrective exercise program may be a suitable intervention to improve landing ground reaction forces and lower limb kinematics in older male adults with genu valgus.

Restricted access

Niell G. Elvin, Alex A. Elvin, Steven P. Arnoczky and Michael R. Torry

Impact forces and shock deceleration during jumping and running have been associated with various knee injury etiologies. This study investigates the influence of jump height and knee contact angle on peak ground reaction force and segment axial accelerations. Ground reaction force, segment axial acceleration, and knee angles were measured for 6 male subjects during vertical jumping. A simple spring-mass model is used to predict the landing stiffness at impact as a function of (1) jump height, (2) peak impact force, (3) peak tibial axial acceleration, (4) peak thigh axial acceleration, and (5) peak trunk axial acceleration. Using a nonlinear least square fit, a strong (r = 0.86) and significant (p ≤ 0.05) correlation was found between knee contact angle and stiffness calculated using the peak impact force and jump height. The same model also showed that the correlation was strong (r = 0.81) and significant (p ≤ 0.05) between knee contact angle and stiffness calculated from the peak trunk axial accelerations. The correlation was weaker for the peak thigh (r = 0.71) and tibial (r = 0.45) axial accelerations. Using the peak force but neglecting jump height in the model, produces significantly worse correlation (r = 0.58). It was concluded that knee contact angle significantly influences both peak ground reaction forces and segment accelerations. However, owing to the nonlinear relationship, peak forces and segment accelerations change more rapidly at smaller knee flexion angles (i.e., close to full extension) than at greater knee flexion angles.

Restricted access

Ali Jalalvand and Mehrdad Anbarian

. Ground reaction forces and impulse area in all axes and vertical loading rate are displayed. Impulses were calculated for all axes (Imp x1,2 , Imp y , and Imp z ) based on the trapezoidal integration method as follows. The trapezoidal integration method is an accurate method for computing integrals. 25