branched-chain amino acids (BCAA), especially leucine, are known to stimulate MPS, as evidenced by in vitro ( Atherton et al., 2010 ) and in vivo rodent ( Anthony et al., 1999 ) and human ( Jackman et al., 2017 ; Wilkinson et al., 2013 ) studies. Thus, BCAA supplementation is a popular nutritional
Search Results
Co-Ingestion of Branched-Chain Amino Acids and Carbohydrate Stimulates Myofibrillar Protein Synthesis Following Resistance Exercise in Trained Young Men
Sarah R. Jackman, Gareth A. Wallis, Jinglei Yu, Andrew Philp, Keith Baar, Kevin D. Tipton, and Oliver C. Witard
Acute Ketone Salts–Caffeine–Taurine–Leucine Supplementation but not Ketone Salts–Taurine–Leucine, Improves Endurance Cycling Performance
Manuel D. Quinones and Peter W.R. Lemon
and leucine, and caffeine resulted in improved high-intensity exercise performance ( Kackley et al., 2020 ). Unfortunately, the investigators used a water placebo, which is a limitation because caffeine is a well-established performance aid ( Grgic et al., 2020 ), even when consumed at low dosages
No Difference Between the Effects of Supplementing With Soy Protein Versus Animal Protein on Gains in Muscle Mass and Strength in Response to Resistance Exercise
Mark Messina, Heidi Lynch, Jared M. Dickinson, and Katharine E. Reed
of amino acids ( Devries & Phillips, 2015 ), that account for the greater effect of whey protein in comparison with soy protein on MPS. However, much of the difference between the two proteins is likely attributable to the higher leucine content of whey protein ( Norton et al., 2012 ; Tang et
Isolated Leucine and Branched-Chain Amino Acid Supplementation for Enhancing Muscular Strength and Hypertrophy: A Narrative Review
Daniel L. Plotkin, Kenneth Delcastillo, Derrick W. Van Every, Kevin D. Tipton, Alan A. Aragon, and Brad J. Schoenfeld
Of the 20 amino acids recognized to compose the building blocks of human protein, only three possess a branched side chain: leucine, isoleucine, and valine. Numerous supplements are sold consisting of these three amino acids, collectively known as the branched-chain amino acids (BCAA), with claims
The Effects of Leucine-Enriched Branched-Chain Amino Acid Supplementation on Recovery After High-Intensity Resistance Exercise
Adam D. Osmond, Dean J. Directo, Marcus L. Elam, Gabriela Juache, Vince C. Kreipke, Desiree E. Saralegui, Robert Wildman, Michael Wong, and Edward Jo
Of the 3 BCAA, leucine is evidently most contributory to this effect in muscle. Therefore, the speculation that supplementary leucine alone would likewise alleviate the symptoms of EIMD is within reason. 11 – 13 A limited amount of evidence demonstrates that supplementary leucine alone has only a
Effect of Intake of Different Dietary Protein Sources on Plasma Amino Acid Profiles at Rest and after Exercise
Louise M. Burke, Julie A Winter, David Cameron-Smith, Marc Enslen, Michelle Farnfield, and Jacques Decombaz
The authors undertook 2 crossover-designed studies to characterize plasma amino acid (AA) responses to the intake of 20 g of protein. In Study 1, 15 untrained and overnight-fasted subjects consumed 20 g protein from skim milk, soy milk, beefsteak, boiled egg, and a liquid meal supplement. In Study 2, 10 fasted endurance-trained subjects consumed 20 g protein from a protein-rich sports bar at rest and after a 60-min submaximal ride. Plasma AA concentrations were measured immediately before and for 180 min after food ingestion using a gas-chromatography flame-ionization detection technique. A pharmacokinetic analysis was undertaken for profiles of total AAs (TAA), essential AAs, branched-chain AAs (BCAA), and leucine. Although area-under-the-curve values for plasma TAA were similar across protein sources, the pattern of aminoacidemia showed robust differences between foods, with liquid forms of protein achieving peak concentrations twice as quickly after ingestion as solid protein-rich foods (e.g., ~50 min vs ~100 min) and skim milk achieving a significantly faster peak leucine concentration than all other foods (~25 min). Completing exercise before ingesting protein sources did not cause statistically significant changes in the pattern of delivery of key AAs, BCAAs, and leucine apart from a 20–40% increase in the rate of elimination. These results may be useful to plan the type and timing of intake of protein-rich foods to maximize the protein synthetic response to various stimuli such as exercise.
Whey Protein Supplementation Is Superior to Leucine-Matched Collagen Peptides to Increase Muscle Thickness During a 10-Week Resistance Training Program in Untrained Young Adults
Jeferson L. Jacinto, João P. Nunes, Stefan H.M. Gorissen, Danila M.G. Capel, Andrea G. Bernardes, Alex S. Ribeiro, Edilson S. Cyrino, Stuart M. Phillips, and Andreo F. Aguiar
, 2018 ) and are crucial for muscle recovery and growth ( Hulmi et al., 2010 ; Shimomura & Kitaura, 2018 ; Shimomura et al., 2010 ). Moreover, the EAA leucine has been widely recognized as a direct stimulator of the mechanistic target of rapamycin (mTORC1; Blomstrand et al., 2006 ; Churchward
Adding Fish Oil to Whey Protein, Leucine, and Carbohydrate Over a Six-Week Supplementation Period Attenuates Muscle Soreness Following Eccentric Exercise in Competitive Soccer Players
Jordan D. Philpott, Chris Donnelly, Ian H. Walshe, Elizabeth E. MacKinley, James Dick, Stuart D.R. Galloway, Kevin D. Tipton, and Oliver C. Witard
study was to investigate the impact of adding fish oil–derived n-3PUFA to a whey protein, leucine, and carbohydrate containing supplement over a six-week period on acute recovery from eccentric muscle damage in competitive soccer players. Rationale for combining n-3PUFA with whey protein, leucine, and
The Effects of Nutritional Supplementation Throughout an Endurance Run on Leucine Kinetics during Recovery
Sharon L. Miller, P. Courtney Gaine, Carl M. Maresh, Lawrence E. Armstrong, Cara B. Ebbeling, Linda S. Lamont, and Nancy R. Rodriguez
This study determined the effect of nutritional supplementation throughout endurance exercise on whole-body leucine kinetics (leucine rate of appearance [Ra], oxidation [Ox], and nonoxidative leucine disposal [NOLD]) during recovery. Five trained men underwent a 2-h run at 65% VO2max, during which a carbohydrate (CHO), mixed protein-carbohydrate (milk), or placebo (PLA) drink was consumed. Leucine kinetics were assessed during recovery using a primed, continuous infusion of 1-13C leucine. Leucine Ra and NOLD were lower for milk than for PLA. Ox was higher after milk-supplemented exercise than after CHO or PLA. Although consuming milk during the run affected whole-body leucine kinetics, the benefits of such a practice for athletes remain unclear. Additional studies are needed to determine whether protein supplementation during exercise can optimize protein utilization during recovery.
Creatine Monohydrate Supplementation, but not Creatyl-L-Leucine, Increased Muscle Creatine Content in Healthy Young Adults: A Double-Blind Randomized Controlled Trial
Andrew T. Askow, Kevin J.M. Paulussen, Colleen F. McKenna, Amadeo F. Salvador, Susannah E. Scaroni, Jade S. Hamann, Alexander V. Ulanov, Zhong Li, Scott A. Paluska, Kayleigh M. Beaudry, Michael De Lisio, and Nicholas A. Burd
of Cr fail to improve on the ergogenic effects of CrM and augment muscle Cr content ( Jagim et al., 2012 ; Kreider et al., 2022 ; Spillane et al., 2009 ), novel supplements continue to be introduced to the market. For example, one such purported analog of Cr, creatyl- L -leucine (CLL), is currently