Search Results

You are looking at 1 - 10 of 472 items for :

  • "lower body" x
Clear All
Restricted access

James Hackney, Jade McFarland, David Smith and Clinton Wallis

Most studies investigating high-speed movements of the lower body, such as drop landing, include a series of practice repetitions intended to allow subjects to accommodate to either the movement itself, the condition of the movement, or both ( Ambegaonkar, Shultz, & Perrin, 2011 ; Hackney, Clay

Restricted access

Travis T. Simpson, Susan L. Wiesner and Bradford C. Bennett

The current means of locating specific movements in film necessitate hours of viewing, making the task of conducting research into movement characteristics and patterns tedious and difficult. This is particularly problematic for the research and analysis of complex movement systems such as sports and dance. While some systems have been developed to manually annotate film, to date no automated way of identifying complex, full body movement exists. With pattern recognition technology and knowledge of joint locations, automatically describing filmed movement using computer software is possible. This study used various forms of lower body kinematic analysis to identify codified dance movements. We created an algorithm that compares an unknown move with a specified start and stop against known dance moves. Our recognition method consists of classification and template correlation using a database of model moves. This system was optimized to include nearly 90 dance and Tai Chi Chuan movements, producing accurate name identification in over 97% of trials. In addition, the program had the capability to provide a kinematic description of either matched or unmatched moves obtained from classification recognition

Restricted access

Abby L. Cheng, John A. Merlo, Devyani Hunt, Ted Yemm, Robert H. Brophy and Heidi Prather

identify elite adolescent female soccer athletes at high risk of lower-body injury, it would be a feasible, safe, cost-effective screening tool that could be implemented through schools and soccer clubs on a national level. The purpose of this study was 2-fold: (1) to describe the injury profile in elite

Restricted access

William P. Ebben

Purpose:

The purpose of this study was to evaluate differences in hamstring activation during lower body resistance training exercises. This study also sought to assess differences in hamstring-to-quadriceps muscle activation ratios and gender differences therein.

Methods:

A randomized repeated measures design was used to compare six resistance training exercises that are commonly believed to train the hamstrings, including the squat, seated leg curl, stiff leg dead lift, single leg stiff leg dead lift, good morning, and Russian curl. Subjects included 34 college athletes. Outcome measures included the biceps femoris (H) and rectus femoris (Q) electromyography (EMG) and the H-to-Q EMG ratio, for each exercise.

Results:

Main effects were found for the H (P < 0.001) and Q (P < 0.001). Post hoc analysis identified the specific differences between exercises. In addition, main effects were found for the H-to-Q ratio when analyzed for all subjects (P < 0.001). Further analysis revealed that women achieved between 53.9 to 89.5% of the H-to-Q activation ratios of men, for the exercises assessed. In a separate analysis of strength matched women and men, women achieved between 35.9 to 76.0% of the H-to-Q ratios of men, for these exercises.

Conclusions:

Hamstring resistance training exercises offer differing degrees of H and Q activation and ratios. Women compared with men, are less able to activate the hamstrings and/or more able to activate the quadriceps. Women may require disproportionately greater training for the hamstrings compared with the quadriceps.

Restricted access

Fergus O’Connor, Heidi R. Thornton, Dean Ritchie, Jay Anderson, Lindsay Bull, Alex Rigby, Zane Leonard, Steven Stern and Jonathan D. Bartlett

is unclear how different within-session volumes, when quantified relative to individual capacities, relate to injury risk. Accordingly, the purpose of this study was to compare the use of absolute versus relative sprint thresholds and determine their association with lower-body soft-tissue and bone

Restricted access

Josh L. Secomb, Sophia Nimphius, Oliver R.L. Farley, Lina Lundgren, Tai T. Tran and Jeremy M. Sheppard

Purpose:

To identify whether there are any significant differences in the lower-body muscle structure and countermovement-jump (CMJ) and squat-jump (SJ) performance between stronger and weaker surfing athletes.

Methods:

Twenty elite male surfers had their lower-body muscle structure assessed with ultrasonography and completed a series of lower-body strength and jump tests including isometric midthigh pull (IMTP), CMJ, and SJ. Athletes were separated into stronger (n = 10) and weaker (n = 10) groups based on IMTP performance.

Results:

Large significant differences were identified between the groups for vastus lateralis (VL) thickness (P = .02, ES = 1.22) and lateral gastrocnemius (LG) pennation angle (P = .01, ES = 1.20), and a large nonsignificant difference was identified in LG thickness (P = .08, ES = 0.89). Furthermore, significant differences were present between the groups for peak force, relative peak force, and jump height in the CMJ and SJ (P < .01−.05, ES = 0.90−1.47) and eccentric peak velocity, as well as vertical displacement of the center of mass during the CMJ (P < .01, ES = 1.40−1.41).

Conclusion:

Stronger surfing athletes in this study had greater VL and LG thickness and LG pennation angle. These muscle structures may explain their better performance in the CMJ and SJ. A unique finding in this study was that the stronger group appeared to better use their strength and muscle structure for braking as they had significantly higher eccentric peak velocity and vertical displacement during the CMJ. This enhanced eccentric phase may have resulted in a greater production and subsequent utilization of stored elastic strain energy that led to the significantly better CMJ performance in the stronger group.

Restricted access

James L. Nuzzo, Michael J. Cavill, N. Travis Triplett and Jeffrey M. McBride

The primary purpose of this investigation was to provide a descriptive analysis of lower-body strength and vertical jump performance in overweight male (n = 8) and female (n = 13) adolescents. Maximal strength was tested in the leg press and isometric squat. Kinetic and kinematic variables were assessed in vertical jumps at various loads. When compared with females, males demonstrated significantly greater (p ≤ .05) absolute maximal strength in the leg press. However, when maximal strength was expressed relative to body mass, no significant difference was observed. There were no significant differences between males and females in vertical jump performance at body mass.

Restricted access

David W. Keeley, Gretchen D. Oliver, Christopher P. Dougherty and Michael R. Torry

The purpose of this study was to better understand how lower body kinematics relate to peak glenohumeral compressive force and develop a regression model accounting for variability in peak glenohumeral compressive force. Data were collected for 34 pitchers. Average peak glenohumeral compressive force was 1.72% ± 33% body weight (1334.9 N ± 257.5). Correlation coefficients revealed 5 kinematic variables correlated to peak glenohumeral compressive force (P < .01, α = .025). Regression models indicated 78.5% of the variance in peak glenohumeral compressive force (R2 = .785, P < .01) was explained by stride length, lateral pelvis flexion at maximum external rotation, and axial pelvis rotation velocity at release. These results indicate peak glenohumeral compressive force increases with a combination of decreased stride length, increased pelvic tilt at maximum external rotation toward the throwing arm side, and increased pelvis axial rotation velocity at release. Thus, it may be possible to decrease peak glenohumeral compressive force by optimizing the movements of the lower body while pitching. Focus should be on both training and conditioning the lower extremity in an effort to increase stride length, increase pelvis tilt toward the glove hand side at maximum external rotation, and decrease pelvis axial rotation at release.

Restricted access

Tania Spiteri, Nicolas H. Hart and Sophia Nimphius

The aim of this study was to compare biomechanical and perceptual-cognitive variables between sexes during an offensive and defensive agility protocol. Twelve male and female (n = 24) recreational team sport athletes participated in this study, each performing 12 offensive and defensive agility trials (6 left, 6 right) changing direction in response to movements of a human stimulus. Three-dimensional motion, ground reaction force (GRF), and impulse data were recorded across plant phase for dominant leg change of direction (COD) movements, while timing gates and high-speed video captured decision time, total running time, and post COD stride velocity. Subjects also performed a unilateral isometric squat to determine lower body strength and limb dominance. Group (sex) by condition (2 × 2) MANOVAs with follow-up ANOVAs were conducted to examine differences between groups (P ≤ .05). Male athletes demonstrated significantly greater lower body strength, vertical braking force and impulse application, knee and spine flexion, and hip abduction, as well as faster decision time and post COD stride velocity during both agility conditions compared with females. Differences between offensive and defensive movements appear to be attributed to differences in decision time between sexes. This study demonstrates that biomechanical and perceptual-cognitive differences exist between sexes and within offensive and defensive agility movements.

Restricted access

Max J. Kurz, Joan E. Deffeyes, David J. Arpin, Gregory M. Karst and Wayne A. Stuberg

The purpose of this investigation was to evaluate the effect of a lower body positive pressure support system on the joint kinematics and activity of the lower extremity antigravity musculature of adults and children during walking. Adults (age = 25 ± 4 years) and children (age = 13 ± 2 years) walked at a preferred speed and a speed that was based on the Froude number, while 0–80% of their body weight was supported. Electrogoniometers were used to monitor knee and ankle joint kinematics. Surface electromyography was used to quantify the magnitude of the vastus lateralis and gastrocnemius muscle activity. There were three key findings: (1) The lower extremity joint angles and activity of the lower extremity antigravity muscles of children did not differ from those of adults. (2) The magnitude of the changes in the lower extremity joint motion and antigravity muscle activity was dependent upon an interaction between body weight support and walking speed. (3) Lower body positive pressure support resulted in reduced activation of the antigravity musculature, and reduced range of motion of the knee and ankle joints.